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Abstract—A systematic understanding of the decomposability
structures in network utility maximization is key to both resource
allocation and functionality allocation. It helps us obtain the most
appropriate distributed algorithm for a given network resource al-
location problem, and quantifies the comparison across architec-
tural alternatives of modularized network design. Decomposition
theory naturally provides the mathematical language to build an
analytic foundation for the design of modularized and distributed
control of networks.

In this tutorial paper, we first review the basics of convexity,
Lagrange duality, distributed subgradient method, Jacobi and
Gauss–Seidel iterations, and implication of different time scales
of variable updates. Then, we introduce primal, dual, indirect,
partial, and hierarchical decompositions, focusing on network
utility maximization problem formulations and the meanings of
primal and dual decompositions in terms of network architec-
tures. Finally, we present recent examples on: systematic search
for alternative decompositions; decoupling techniques for cou-
pled objective functions; and decoupling techniques for coupled
constraint sets that are not readily decomposable.

Index Terms—Congestion control, cross-layer design, decompo-
sition, distributed algorithm, network architecture, network con-
trol by pricing, network utility maximization, optimization, power
control, resource allocation.

I. INTRODUCTION

MANY NETWORK resource allocation problems can be
formulated as a constrained maximization of some utility

function. There are at least three levels of understanding as to
what it means to “efficiently solve” a network utility maximiza-
tion problem. The first is on theoretical properties such as global
optimality and duality gap. It is well known that for a convex
optimization (minimizing a convex function over a convex con-
straint set), a local optimum is also a global optimum and the
duality gap is zero under mild conditions. The second is on
computational properties. There are provably polynomial-time
and practically fast and scalable (but centralized) algorithms,
such as interior-point methods, to solve convex optimization.
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The third is on decomposability structures, which may lead to
distributed (and often iterative) algorithms that converge to the
global optimum. Distributed solutions are particularly attractive
in large-scale networks where a centralized solution is infea-
sible, nonscalable, too costly, or too fragile. It is the third level
that we concern ourselves with in this tutorial paper.

The importance of “decomposability” to distributed solu-
tions is similar to that of “convexity” to efficient computation
of global optimum.1 Similar to transformations that may turn
an apparently nonconvex optimization into a convex one,
there are alternative problem representations that may reveal
hidden decomposability structures, even though representing
the problem in a different way does not change the optimal
solution. For a given problem representation, there are often
many choices of distributed algorithms, each with possibly
different characteristics of the following attributes: rate and
robustness of convergence, tradeoff between local computation
and global communication, and quantity and symmetry of
message passing. Which alternative is the best depends on the
specifics of the application.

A systematic understanding of the decomposability structures
in network utility maximization is key to both resource alloca-
tion and functionality allocation. It obviously helps us obtain the
most appropriate distributed algorithm for a given network re-
source allocation problem, ranging from distributed routing and
scheduling to power control and congestion control. Perhaps
even more importantly, it quantifies the comparison across ar-
chitectural alternatives of modularized network design. A para-
mount issue in the design of network architecture is where to
place functionalities and how to connect them, an issue that is
often more critical than the detailed design of how to carry out a
certain functionality. Decomposition theory naturally provides
the mathematical language to build an analytic foundation for
the design of modularized and distributed control of networks.

In particular, the framework of network utility maximization
(NUM) has recently been substantially extended from an ana-
lytic tool of reverse-engineering transmission control protocol
(TCP) congestion control to a mathematical theory of layered
network architectures. This framework of “Layering as Opti-
mization Decomposition” (surveyed in [1], see also discussions
in [2] and another tutorial in this special issue [3]) rigorously in-
tegrates the various protocol layers into a single coherent theory,

1However, unlike the notion of convexity, the notion of decomposability
does not have a precise definition. It is often quantified by the least amount
of global communications needed among decomposed modules to solve a
reference problem.
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by regarding them as carrying out an asynchronous distributed
computation over the network to implicitly solve a global NUM
problem. Different layers iterate on different subsets of the de-
cision variables at different time scales using local information
to achieve individual optimality. These local algorithms collec-
tively achieve a global objective. This approach provides a uni-
fying view and holistic methodology to study performance and
architectural issues in protocol layering.

Most of the papers in the vast, recent literature on NUM use
a standard dual-based distributed algorithm. While the basic
reverse engineering results for TCP shows that the current
protocol is doing a dual-based distributed algorithm, it is also
known that dual decomposition has major drawbacks when the
application is inelastic and utility functions are nonconcave,
which leads to divergence of congestion control. While most
of the recent publications on “Layering As Optimization De-
composition” use congestion price as the “layering price,” it is
also known that congestion price can be a poor coordination
across layers such as TCP and Internet protocol (IP). Contrary
to the apparent impression that a simple dual decomposition is
the only possibility, there are in fact many alternatives to solve
a given network utility problem in different but all distributed
manners. Each different decomposition of the mathematical
problem formulation represents a new possibility of network
architecture. But to develop such a theory, alternative decom-
positions must be fully explored to understand architectural
possibilities, both “vertically” across functional modules
(i.e., the layers), and “horizontally” across disparate network
elements.

There is a large body of general results on the mathematics
of distributed computation, some of which are summarized
in standard textbooks such as [4]–[7]. In this tutorial paper,
we will first in Section II review the basics of convexity,
Lagrange duality, distributed subgradient method, Jacobi and
Gauss–Seidel iterations, and implication of different time
scales of variable updates. Then, we will introduce the basic
techniques of primal, dual, indirect, partial, and hierarchical
decompositions in Section III, focusing on NUM problem
formulations and the associated engineering implications. In
Section IV, we will present recent examples on: 1) systematic
search for alternative decompositions; 2) decoupling techniques
for coupled objective functions; and 3) decoupling techniques
for coupled constraint sets that are not readily decomposable.

II. BASIC CONCEPTS

A. Convex Optimization and Lagrange Duality

Convex optimization is a well-developed area in both the
theoretical and practical aspects, especially during the last two
decades when a number of fundamental and practical results
have been obtained [8], [9]. Consider the following generic op-
timization problem:

(1)

where is the optimization variable, is the cost or
objective function, are the inequality constraint
functions, and are the equality constraint functions.

If the objective and inequality constraint functions are
convex2 and the equality constraint functions are linear (or,
more generally, affine), the problem is then a convex optimiza-
tion problem (or convex program). A point in the domain
of the problem (set of points for which the objective and all
constraint functions are defined) is feasible if it satisfies all
the constraints and . The problem (1)
is said to be feasible if there exists at least one feasible point
and infeasible otherwise. The optimal value (minimal value) is
denoted by and is achieved at an optimal solution , i.e.,

.
Convexity is often viewed as the “watershed” between easy

and hard optimization problems. This is in part because a
local optimum of convex optimization is also globally optimal,
duality gap is zero under certain constraint qualifications, the
Karush–Kuhn–Tucker (KKT) conditions are both necessary
and sufficient for primal-dual optimality, and there are central-
ized algorithms that are provably polynomial-time and very
fast and scalable in practice. For details, the reader is referred
to books [8], [9] and another tutorial in this special issue [10].

In particular, convex optimization has highly useful Lagrange
duality properties, which also lead to decomposability struc-
tures. Lagrange duality theory links the original minimization
problem (1), termed primal problem, with a dual maximization
problem, which sometimes readily presents decomposition pos-
sibilities. The basic idea in Lagrange duality is to relax the orig-
inal problem (1) by transferring the constraints to the objective
in the form of a weighted sum. The Lagrangian of (1) is defined
as

(2)

where and are the Lagrange multipliers or prices associ-
ated with the th inequality constraint and with the
th equality constraint , respectively.

The optimization variable is called the primal variable and
the Lagrange multipliers and are also termed the dual vari-
ables. Similarly, the original objective function is referred
to as the primal objective, whereas the dual objective is
defined as the minimum value of the Lagrangian over

(3)

which is concave even if the original problem is not convex be-
cause it is the pointwise infimum of a family of affine functions
of . Note that the infimum in (3) is with respect all (not
necessarily feasible points). The dual variables are dual
feasible if .

It turns out that the primal and dual objectives satisfy
for any feasible and . The dual function can then

2A function f : ! is convex if, for all x;y 2 dom f and � 2 [0; 1],
�x+ (1� �)y 2 dom f (i.e., the domain is a convex set) and f(�x+ (1�
�)y) � �f(x) + (1 � �)f(y).
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be maximized to obtain a lower bound on the optimal value
of the original problem (1):

(4)

which is always a convex optimization problem even if the orig-
inal problem is not convex.

The difference between the optimal primal objective and
the optimal dual objective is called the duality gap, which
is always nonnegative (weak duality). A central
result in convex analysis [8], [9] is that when the problem is
convex, under some mild technical conditions (called constraint
qualifications3), the duality gap reduces to zero at the optimal
(i.e., strong duality holds). Hence, the primal problem (1) can
be equivalently solved by solving the dual problem (4).

B. Gradient and Subgradient Algorithms

After performing a decomposition, the objective function of
the resulting master problem may or may not be differentiable.
For differentiable/nondifferentiable functions a gradient/sub-
gradient method is very convenient because of its simplicity,
little requirements of memory usage, and amenability for
parallel implementation [7], [8], [11].

Consider the following general concave maximization over a
convex set:

(5)

Both the gradient and subgradient projection methods generate
a sequence of feasible points as

(6)

where is a gradient of evaluated at the point if is
differentiable and a subgradient otherwise, denotes the pro-
jection onto the feasible set , and is a positive step-size.
It is interesting to point out that each iteration of the subgradient
method may not improve the objective value as happens with a
gradient method. What makes the subgradient method converge
is that, for sufficiently small step-size, the distance of the cur-
rent solution to the optimal solution decreases.

There are many results on convergence of the gradient/sub-
gradient method with different choices of step-sizes [8], [11],
[12]. For example, for a diminishing step-size rule

, where is a fixed nonnegative number, the algo-
rithm is guaranteed to converge to the optimal value (assuming
bounded gradients/subgradients) [12]. For a constant step-size

, more convenient for distributed algorithms, the gra-
dient algorithm converges to the optimal value provided that
the step-size is sufficiently small (assuming that the gradient is
Lipschitz) [8], whereas for the subgradient algorithm the best

3One simple version of the constraint qualifications is Slater’s condition,
which is satisfied when the problem is strictly feasible (i.e., when there exists
x such that f (x) < 0 for 1 � i � m and h (x) = 0 for 1 � i � p) [8], [9].

value converges to within some range of the optimal value (as-
suming bounded subgradients) [12].

C. Order of Updates: Gauss–Seidel and Jacobi Algorithms

Consider the following general minimization problem:

(7)

where and the feasible set is the Cartesian
product of closed convex sets .

The nonlinear Gauss–Seidel algorithm [4, Sec. 3.3.5] (also
termed block-coordinate descent algorithm [8]) consists of iter-
atively optimizing in a circular fashion with respect to one set
of variables while keeping the rest fixed. Formally, it is defined
as

(8)
where is the index for a global iteration.

The nonlinear Jacobi algorithm [4, Sec. 3.3.5] consists of it-
eratively optimizing in a parallel fashion with respect to one set
of variables while keeping the rest fixed. Formally, it is defined
as

(9)
If the function is continuously differentiable and convex on

the set , and each of the minimizations with respect to each
single variable is uniquely attained, then every limit point of
the sequence generated by the nonlinear Gauss–Seidel
algorithm in (8) minimizes over [4, Ch. 3, Prop. 3.9], [8,
Prop. 2.7.1]. Observe that only if the original problem (7) has a
unique solution can we guarantee that the sequence will
have a unique limit point and, hence, that it converges.

Suppose that the function is continuously differentiable and
the mapping defined by is a contraction for
some positive scalar with respect to the block-maximum norm

, where the ’s are positive scalars.
Then, there exists a unique solution to problem (7) and the
sequence generated by the nonlinear Gauss–Seidel algo-
rithm in (8) and by the Jacobi algorithm in (9) converges to
geometrically [4, Ch. 3, Prop. 3.10]. For conditions for the con-
traction assumption to be satisfied, see [4, Ch. 3, Prop. 1.10].

D. Timescale of Updates

The update of the different variables in an optimization
problem can be done in many different ways. To start with,
the variables can be optimized either in one-shot (with full
convergence) or iteratively [as with the gradient/subgradient
algorithm in (6)]. Also, optimization can be done according to
different update schedules; in particular, the two most common
ones are the sequential optimization in (8) and the parallel
optimization in (9), i.e., Gauss–Seidel and Jacobi algorithms.
Even the frequency of updates of different subsets of variables
can be different. The combination of all these possibilities in the
updates of the different variables of an optimization problem
leads to a variety of different algorithms that may operate on a
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Fig. 1. Decomposition of a problem into several subproblems controlled by a
master problem through prices (dual decomposition) or direct resource alloca-
tion (primal decomposition).

single or several time scales, clearly with different implications
for implementation.

E. Implicit/Explicit Message Passing and Converge Properties

Different distributed algorithms can be obtained based on a
combination of different decompositions (as discussed in the
next section) with different algorithms (e.g., gradient/subgra-
dient, Gauss–Seidel, and Jacobi). Each of them has different
characteristics in terms of amount of message passing and con-
vergence properties.

Whenever a primal or dual decomposition is applied, the orig-
inal problem is essentially decomposed into a master problem
and subproblems with communication between the two levels.
This communication is in the form of message passing which in-
troduces some overhead in the network. In some cases, however,
this message passing can be implicit in the system, e.g., delay
and packet error probability, as these quantities have physical
meanings and can be implicitly measured without the need of
explicit signaling.

The algorithms presented in this paper have a provable con-
vergence to the global optimum of the original problem which
will be assumed convex. The speed of convergence is more dif-
ficult to quantify and will depend on many factors such as the
number of levels in the decomposition (similarly, number of
time scales), the amount of signaling, and the particular com-
bination of numerical algorithms employed.

III. DECOMPOSITION THEORY

The basic idea of decomposition is to decompose the original
large problem into distributively solvable subproblems which
are then coordinated by a high-level master problem by means
of some kind of signaling (see Fig. 1) [4], [7], [8]. Most of the
existing decomposition techniques can be classified into primal
decomposition and dual decomposition methods. The former is
based on decomposing the original primal problem, whereas the
latter is based on decomposing the Lagrangian dual problem [8],
[11].

Primal decomposition methods correspond to a direct
resource allocation since the master problem allocates the
existing resources by directly giving each subproblem the
amount of resources that it can use. Dual decomposition
methods correspond to a resource allocation via pricing since
the master problem sets the price for the resources to each
subproblem, which has to decide the amount of resources to be
used depending on the price.

A. Dual Decomposition

A dual decomposition is appropriate when the problem has
a coupling constraint such that, when relaxed, the optimization
problem decouples into several subproblems. Consider, for ex-
ample, the following problem:

(10)

Clearly, if the constraint were absent, then the
problem would decouple. Therefore, it makes sense to form the
Lagrangian by relaxing the coupling constraint in (10) as

(11)

such that the optimization separates into two levels of opti-
mization. At the lower level, we have the subproblems (i.e., the
Lagrangians), one for each , in which (11) decouples

(12)

At the higher level, we have the master dual problem in charge
of updating the dual variable by solving the dual problem:

(13)

where is the dual function obtained as the maximum value
of the Lagrangian solved in (12) for a given . This approach is
in fact solving the dual problem instead of the original primal
one. Hence, it will only give appropriate results if strong duality
holds (e.g., when the original problem is convex and there exist
strictly feasible solutions).

If the dual function is differentiable, then the master dual
problem in (13) can be solved with a gradient method. In gen-
eral, however, it may not be differentiable, and the subgradient
method becomes again a convenient approach which only re-
quires the knowledge a subgradient for each given by [8,
Sec. 6.1]

(14)

where is the optimal solution of problem (12) for a given
. The global subgradient is then

. The subproblems in (12) can be locally and
independently solved with knowledge of .

B. Dual Decomposition Application

We illustrate the one-level, full dual decomposition by ap-
plying the standard method (see, e.g., [13] and [14]) to the basic
NUM problem in [19] for distributed end-to-end rate allocation.
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Consider a communication network with links, each with
a fixed capacity of , and sources or nodes, each transmit-
ting at a source rate of . Each source emits one flow, using
a fixed set of links in its path, and has a utility function

. NUM is the problem of maximizing the total utility
, over the source rates , subject to linear flow con-

straints for all links

(15)

where the utilities are twice-differentiable, increasing, and
strictly concave functions.

One of the standard distributed algorithms to solve (15) is
based on a dual decomposition. We first form the Lagrangian of
(15)

(16)

where is the Lagrange multiplier (link price) associated
with the linear flow constraint on link , is the
aggregate path congestion price of those links used by source ,
and is the th Lagrangian to be
maximized by the th source.

The dual decomposition results in each source solving, for
the given

(17)

which is unique due to the strict concavity of .
The master dual problem is

(18)

where . Since the solution in (17) is
unique, it follows that the dual function is differentiable
and the following gradient method can be used:

(19)
where is the iteration index, is a sufficiently small pos-
itive step-size, and denotes the projection onto the nonneg-
ative orthant.

The dual variable will converge to the dual optimal
as and, since the duality gap for (15) is zero and the
solution to (17) is unique, the primal variable will also
converge to the primal optimal variable .

Summarizing, we have the following algorithm.

Standard Dual Algorithm to solve the basic NUM (15):

• Parameters: each source needs its utility and each link
its capacity .

• Initialization: set and equal to some
nonnegative value for all .

1) Each source locally solves its problem by computing (17)
and then broadcasts the solution .

2) Each link updates its prices with the gradient iterate (19)
and broadcasts the new price .

3) Set and go to step 1 (until satisfying termination
criterion).

Note that there is no need for explicit message passing since
can be measured by each source as queuing delay and

can be measured by each link as the total traffic
load.

C. Primal Decomposition

A primal decomposition is appropriate when the problem has
a coupling variable such that, when fixed to some value, the
rest of the optimization problem decouples into several subprob-
lems. Consider, for example, the following problem:

(20)

Clearly, if variable were fixed, then the problem would de-
couple. Therefore, it makes sense to separate the optimization
in (20) into two levels of optimization. At the lower level, we
have the subproblems, one for each , in which (20) decouples
when is fixed

(21)

At the higher level, we have the master problem in charge of
updating the coupling variable by solving

(22)

where is the optimal objective value of problem (21) for
a given . If the original problem (20) is a convex optimization
problem, then the subproblems as well as the master problem
are all convex programs.

If the function is differentiable, then the master
problem (22) can be solved with a gradient method. In gen-
eral, however, the objective function may be non-
differentiable, and the subgradient method is a convenient ap-
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proach which only requires the knowledge a subgradient (see
Section II-B for details on subgradients) for each as given
by [7, Ch. 9], [8, Sec. 6.4.2]

(23)

where is the optimal Lagrange multiplier corresponding
to the constraint in problem (21). The global subgra-
dient is then . The subproblems
in (21) can be locally and independently solved with the knowl-
edge of .

D. Primal Decomposition Application

Primal decomposition is naturally applicable to resource
sharing scenarios where “virtualization” or “slicing” of the
resources are carried out by dividing the total resource to mul-
tiple parts, one for each of the entities (e.g., source-destination
pairs sharing link capacities, or experiment running on a shared
communication infrastructure) competing for the resource. As
will be shown at the end of the next subsection, the points
where the resources are divided can be represented by auxiliary
variables in a primal decomposition. If these variables are
fixed, we would have a static slicing of the resources, which
can be suboptimal. If these variables are optimized by a master
problem and used to coordinate the allocation of resources to
the subproblems, we would have an optimal dynamic slicing.
In summary, a canonical engineering example for dual decom-
position is end-to-end pricing feedback (pricing coordinated
control), whereas that for primal decomposition is dynamic
slicing (direct resource allocation).

Before finishing with this introduction of the basic tech-
niques of primal and dual decompositions, we briefly mention
two related topics. First, note that “primal decomposition” in
this paper is not the same concept as “primal penalty function
approach” or the “primal-driven network control” in, e.g., [19].
Second, there is also a celebrated decomposition in [19] of
the SYSTEM problem (i.e., the basic NUM problem) into one
NETWORK problem and local USER problems, which can be
obtained, for example, in this way (more details in [19] and
[20]): first turn the SYSTEM problem into an unconstrained
optimization with one penalty function term for each of the
original constraints (e.g., linear capacity constraints), then write
down the gradient update of the new objective function in the
unconstrained problem, and finally identify the weights in
the weighted log maximization in the NETWORK problem as

and identify the price as the sum of the deriva-
tives of the penalty functions along the path used by source .
Then, the decomposition in problem domain (from SYSTEM
problem into NETWORK problem plus USER problems), and
the associated distributed algorithm, can be recovered.

E. Indirect Decomposition

As we have seen, problems with coupling constraints are nat-
urally suited for a dual decomposition, whereas problems with
coupling variables are convenient for a primal decomposition.
However, this is not a strict rule as often the problem can be

reformulated, and then more effective primal and dual decom-
positions can be indirectly applied. The introduction of auxil-
iary variables is the key element that provides much flexibility
in terms of choosing a primal or a dual decomposition. For ex-
ample, in [21] and Section IV-B, an indirect dual decomposition
is applied to a problem with coupling among the utilities based
on the use of auxiliary variables.

The basic techniques of indirect decomposition are illustrated
as follows. Problem (20) contains the coupling variable and
was decoupled in (21) and (22) via a primal decomposition ap-
proach. However, it can also be solved with an indirect dual de-
composition by first introducing the additional auxiliary vari-
ables

(24)

and then relaxing the coupling constraints via a dual
decomposition.

Consider now problem (10) which contains the coupling con-
straint and was decoupled in (12) and (13) via a
dual decomposition. By introducing again additional auxiliary
variables the problem becomes

(25)

and the coupling variable can be dealt with
using a primal decomposition.

Another example is the following problem:

(26)

We can take a dual decomposition approach by relaxing the cou-
pling constraint . However, another alternative is
to transform the coupling constraint into a coupling variable.
This is easily acomplished by introducing the auxiliary variable

and rewriting the coupling constraint as

(27)

(28)

At this point, we can use a primal decomposition to deal with
the coupling variable .
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Fig. 2. Example of a hierarchical primal/dual decomposition with two levels.

F. Hierarchical Decomposition

An important factor that leads to alternatives of distributed
architectures is the application of primal/dual decompositions
recursively: the basic decompositions are repeatedly applied to
the problem to obtain smaller and smaller subproblems, as il-
lustrated in Fig. 2.

For example, consider the following problem which includes
both a coupling variable and a coupling constraint:

(29)

One way to decouple this problem is by first taking a primal
decomposition with respect to the coupling variable , and then
a dual decomposition with respect to the coupling constraint

. This would produce a two-level optimization
decomposition: a master primal problem, a secondary master
dual problem, and the subproblems. Observe that an alternative
approach would be to first take a dual decomposition and then
a primal one. The order of decompositions is important as this
determines the relationship between the different time scales of
the resulting algorithm and the different modules of the network
control protocol.

Another example that shows flexibility in terms of different
decompositions is the following general problem with two sets
of constraints:

(30)

One way to deal with this problem is via the dual problem with
a full relaxation of both sets of constraints to obtain the dual
function . At this point, instead of minimizing directly
with respect to and , it can be minimized over only one set
of Lagrange multipliers first, and then over the remaining one:

. This approach corresponds to first applying
a full dual decomposition, and then a primal one on the dual
problem.

Fig. 3. Alternative problem representations may lead to different decompos-
ability structures, which in turn may lead to a choice of distributed algorithms,
each with different engineering implications to network architectures.

Alternatively, problem (30) can be approached via the dual
but with a partial relaxation of only one set of constraint, say

, , obtaining the dual function to be minimized
by the master problem. Observe now that in order to compute

for a given , the partial Lagrangian has to be maximized
subject to the remaining constraints , for which
yet another relaxation can be used. This approach corresponds
to first applying a partial dual decomposition and then, for the
subproblem, another dual decomposition.

When there are more than one level of decomposition, and
all levels conduct some type of iterative algorithms, such as the
subgradient method, convergence and stability are guaranteed if
the lower level master problem is solved on a faster time scale
than the higher level master problem, so that at each iteration of
a master problem all the problems at a lower level have already
converged. If the updates of the different subproblems operate
on similar time scales, convergence of the overall system can
still be guaranteed under certain technical conditions [4], [22].

IV. VARIATIONS AND EXTENSIONS

A. Systematic Search for Alternative Decomposition [23]

Section III provides us with the fundamental building blocks
to obtain a variety of different algorithms for the same network
problem. As illustrated in Fig. 3, each distributed algorithm may
have different characteristics among the following attributes:
speed and robustness of convergence, amount and symmetry
of message passing, amount and symmetry of local computa-
tion, implications to engineering implementation, etc. Some-
times, even an alternative representation of the same problem
may lead to new decomposability structures, and thus new al-
ternatives in distributed algorithms. Even though problem trans-
formations do not alter the optimal solutions, they may provide
new algorithms to attain the optimal solutions.

Examples of alternative “vertical decompositions,” which
further lead to different layered protocol stacks, can be found,
for example, in [15] where a new scheduling layer is intro-
duced, in [16] where the routing functionality is absorbed into
congestion control and scheduling, and in [17] and [18] where
different time scales of joint congestion and contention control
provide implementation choices.
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Examples of alternative “horizontal decompositions” can
be found in [23]. One of the examples, on quality-of-service
(QoS) rate allocation, is briefly summarized below to illustrate
the basic idea of alternative decompositions. Sometimes a rate
allocation mechanism needs to differentiate users in different
QoS classes. For example, the total link capacity received by
each QoS class must lie within a range prescribed in the service
level agreement. Such constraints introduce new coupling to
the basic NUM problem and lead to alternative decomposition
possibilities. We will see in this section two different distributed
algorithms to solve this type of QoS rate allocation problem,
both with a differential pricing interpretation to the new set of
Lagrange multiplier introduced.

Consider now the basic NUM but with different classes of
users that will be treated differently. We constrain the rates to
be within a range for each class. To simplify the exposition we
consider only two classes of users. Denoting by and
the aggregate rates of classes 1 and 2, respectively, along the th
link, the problem formulation is

(31)

Observe that in the absence of the constraints
, problem (31) becomes the basic NUM in (15). Also note

that, without loss of generality, the equality flow constraints can
be rewritten as inequality flow constraints. We will consider two
decompositions: a primal decomposition with respect to the ag-
gregate rate of each class, and a dual decomposition with respect
to the total aggregate rate constraints from both classes.

1) Primal-Dual Decomposition: Consider first a primal de-
composition of (31) by fixing the aggregate rates and .
Problem (31) becomes two independent subproblems, for ,
2, identical to the basic NUM in (15)

(32)

where the fixed aggregate rates play the role of the fixed
link capacities in the basic NUM of (15). These two independent
basic NUMs can be solved as explained in Section III-B.

The master primal problem is

(33)

where is the optimal objective value of (32) for a given
, with a subgradient given by the Lagrange multiplier

associated to the constraints in (32).

Observe that is the set of differential prices for the QoS
class . The master primal problem (33) can now be solved with
a subgradient method by updating the aggregate rates as

(34)

where denotes the projection onto the feasible convex

set
. Nicely enough, this feasible set enjoys the

property of naturally decomposing into a Cartesian product
for each of the links: . Therefore, this
subgradient update can be performed independently by each
link simply with the knowledge of its corresponding Lagrange
multipliers and , which in turn are also updated inde-
pendently by each link as in Section III-B.

Summarizing, we have the following algorithm.

Primal-Dual Algorithm to solve QoS rate allocation (31):

• Parameters: each source needs its utility and each link
its capacity and rate limits for each class and .

• Initialization: set and equal to some
nonnegative value for all .

1) Solve basic NUMs in (32) with the canonical dual
algorithm this implies an iterative algorithm.

2) Each link updates its aggregate rate with the subgradient
iterate (34) and broadcasts the new rates and

.
3) Set and go to step 1 (until satisfying termination

criterion).

Observe that there are two levels of decompositions (steps 1
and 2): on the highest level there is a master primal problem, on
a second level there is a secondary master dual problem, and on
the lowest level the subproblems. There is no explicit signaling
required.

2) Partial Dual Decomposition: Consider now a dual
decomposition of (31) by relaxing the flow constraints

. This problem decomposes into
one maximization for each source, as (17) in the basic NUM,
plus the following additional maximization to update the ag-
gregate rates:

(35)

which can be solved independently by each link with knowledge
of its corresponding Lagrange multipliers and , which
in turn are also updated independently by each link.
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The master dual problem corresponding to this dual decom-
position is updated with the following subgradient method (sim-
ilarly to (19)):

(36)

Summarizing, we have the following algorithm.

Partial-Dual Algorithm to solve QoS rate allocation (31):

• Parameters: each source needs its utility and each link
its capacity and rate limits for each class and .

• Initialization: set and equal to some
nonnegative value for all .

1) Each source locally solves its problem by computing (17)
and broadcasts the solution .

2) Each link obtains the per-class capacities by solving
(35), updates its price for each class with the
subgradient iterate (36), and broadcasts the new price

.
3) Set and go to step 1 (until satisfying termination

criterion).

Observe that this approach contains only one level of decom-
position and no explicit signaling is required.

3) Summary: In the primal-dual decomposition approach,
each link updates the aggregate rates on a slower time scale
and the prices on a faster time scale, whereas in the partial dual
decomposition approach each link updates the prices on a slower
time scale and the aggregate rates on a faster time scale (actually
in one shot); therefore, the speed of convergence of the partial
dual approach is likely to be faster in general. In both cases, the
users are privy of the existence of classes and only the links have
to take this into account by having one price for each class. In
other words, this is a way to give each class of users a different
price than the one based on the standard dual-based algorithm
so that they can be further controlled. In the extreme case of one
user per class, the difference between these two alternatives is
similar to that between rate-based congestion control, such as
XCP and RCP, and pricing-based congestion control, such as
Reno and Vegas.

B. Decoupling of Coupled Objectives [21]

The majority of the utility problem formulations considered
in the literature concern uncoupled utilities where the local
variables corresponding to one node do not directly disturb the
utilities of the other nodes. Systems with competition or coop-
eration, however, do not satisfy this assumption and the utilities
are indeed coupled (see Fig. 4). An example of cooperation
model can be found in networks where nodes form clusters and
the utility obtained by each node depends on the rate allocated
to others within the same cluster. An example of competition
model is wireless power control and digital subscriber line

Fig. 4. Three network illustrations in terms of coupling. (a) All uncoupled
utilities. (b) Partially coupled utilities within clusters. (c) Fully coupled utili-
ties. (The dotted lines indicate coupling and where the consistency prices are
exchanged.)

(DSL) spectrum management of copper wires in a cable binder,
where the utilities are functions of the signal-to-interference
ratios (SIRs) that are dependent on the transmit powers of other
users.

Consider the following NUM problem where each utility not
only depends on the local variable but also on variables of other
nodes:

(37)

where the (strictly concave) utilities depend on a local
vector variable and on variables of other utilities for

(i.e., coupled utilities), is the set of nodes cou-
pled with the th utility, the sets are arbitrary convex sets
representing local constraints, and the coupling constraining
function is not necessarily linear, but still convex.
Note that this model has two types of coupling: coupling
constraints and coupled utilities.

The key idea to address coupled utilities is to introduce aux-
iliary variables and additional equality constraints, thus trans-
ferring the coupling in the objective function to coupling in the
constraints, which can then be decoupled by dual decomposition
and solved by introducing additional consistency pricing. It is
reasonable to assume that if two nodes have their individual util-
ities dependent on each other’s local variables, then there must
be some communication channels in which they can locally ex-
change pricing messages. It turns out that the global link conges-
tion price update of the standard dual algorithm is not affected
by the local consistency price updates, which can be conducted
via these local communication channels among the nodes.

We first introduce in problem (37) auxiliary variables for
the coupled arguments in the utility functions and additional
equality constraints to enforce consistency

(38)
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where and are local variables at the th node. Next, to
obtain a distributed algorithm, we take a dual decomposition
approach

(39)

where are the link prices and the ’s are the consistency
prices. By exploiting the decomposability structure of the
Lagrangian, it separates into many subproblems where maxi-
mization is done using local variables (the th subproblem uses
only variables with the first subscript index )

(40)

where are auxiliary local variables for the th node.
The optimal value of (39) for a given set of ’s and defines

the dual function . The dual problem is thus given by

(41)

which can be solved with the following updates:

(42)

(43)

It is worthwhile noting that (41) is equivalent to

(44)
Solving the dual function [either (41) or (44)] is equivalent to
solving the original problem.

Summarizing, we have the following two algorithms based
on problems (41) and (44), respectively.

Full Dual Algorithm to solve coupled-objective NUM (37):

• Parameters: each node needs its utility and constraint
function , and each link its capacity .

• Initialization: set , equal to some nonnegative
value, and the set equal to some value.

1) Each source locally solves its problem (40) and broadcasts
the solution (not the auxiliary variables ).

2) Price updating:
i) Each link updates the link prices with the iterate in

(42) and broadcasts the new price .
ii) Each node updates the consistency prices with

the iterate in (43), then broadcast the new prices
, for all , to the coupled nodes within

the cluster.
3) Set and go to step 1 (until satisfying termination

criterion).

Dual-Primal Algorithm to solve coupled-objective NUM
(37):

• Parameters: each node needs its utility and constraint
function , and each link its capacity .

• Initialization: set , equal to some nonnegative
value, and the set equal to some value.

1) Each source locally solves its problem (40) and broadcasts
the solution (not the auxiliary variables ).

2) Fast price updating: each node updates the consistency
prices with the iterate in (43), then broadcasts the new
prices , for all , to the coupled nodes within
the cluster.

3) Set and go to step 1 (until satisfying termination
criterion).

4) Slow price updating: each link updates the link prices with
the iterate in (42) and broadcasts the new price .

5) Go to step 1 (until satisfying termination criterion).

In the full-dual algorithm, the link prices and the consistency
prices are simultaneously updated to solve (41) using a subgra-
dient algorithm. In the dual-primal algorithm, however, the inner
minimization of (44) is fully performed (by repeatedly updating
the set of ’s) for each update of . This latter approach im-
plies two time scales: a fast time scale in which each cluster
updates the corresponding consistency prices and a slow time
scale in which the network updates the link prices. In compar-
ison, the former approach has just one time scale. The alternative
of two time scales has an interest from a practical perspective
since consistency prices can often be exchanged very quickly
over local communication channels only by nodes that are cou-
pled together.

Coupling Through Interference: Of particular interest is the
case where the coupling between utilities is through an interfer-
ence term that contains an additive combination of functions of
the coupling variables

(45)

where and the ’s are convex func-
tions. Note that, by definition of interference, each utility

is decreasing in . The interference term has a
physical implication in practice where network nodes such as
DSL modems already have the capability to locally measure
the total interference from other competing network nodes.
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The problem with auxiliary variables for the coupled vari-
ables is

(46)

where the interference inequality constraint is satisfied with
equality at an optimal point since utilities are decreasing in
the interference term. Note that if the functions are linear,
then the interference inequality constraints can be substituted
by equality constraints. The only modification to our earlier
algorithm is that the update of the consistency prices in (43) is
replaced by

(47)

which can be done at the th node with knowledge of the local
variables and of the linear combination of the coupling variables
from other nodes.

By leveraging the structure of the interference term, only one
consistency price is needed for each interference term (which
may contain many coupled variables), substantially reducing the
amount of signaling. Indeed, message passing overhead, mea-
sured by the number of consistency prices to update in (43) and
(47), is of the order and , respectively, where
is the number of nodes in a cluster.

C. Decoupling for Coupled Constraint Sets [29]

When the coupled constraint sets do not seem to be readily
primal or dual decomposable, reparametrization may reveal
hidden decomposability structures. In this subsection, we
briefly outline a recent example on an important problem in
wireless networks.

In cellular wireless networks, uplink power control is an
important mechanism to control interference. In the early to
mid 1990s, distributed power control for fixed SIR assign-
ment was extensively studied (e.g., [24]), from the classical
received-power equalization in code-division multiple-access
(CDMA) systems to the Foschini–Miljanic power control [25]
and its many extensions. Then, motivated by CDMA-based
third-generation (3G) wireless data networks, researchers
studied joint optimization of SIR assignment (or, in general,
QoS assignment) and power control, where optimality is with
respect to a total utility function of the SIRs over a feasible
SIR region. This utility maximization over the complicated,
coupled constraint set of feasible QoS assignments is illustrated
in Fig. 5. Distributed algorithms were proposed to attain Nash
equilibrium (e.g., [26]), which can be socially suboptimal.
Optimal algorithms were proposed [27], [28] but required
centralized computation. A major bottleneck is that the solution
reduces to computing Perron–Frobenius eigenvectors of a

Fig. 5. A fundamental problem of joint QoS and power control in cellular up-
links: maximizing concave utilities, whose level curves are shown, over a convex
set of feasible QoS region. Here, QoS metrics are functions of SIR.

certain matrix defined by the channel gains, an operation that
is not readily distributed.

This open problem of distributed, optimal SIR assignment
and power control has recently been solved in [29], where the
key insight is to reparameterize the coupling constraint set
through left, rather than right, eigenvectors, which reveals a
hidden decomposability structure and leads to a dual decompo-
sition. The basic problem setup and algorithm is outlined in the
rest of this subsection.

Consider uplink transmissions in a multicellular wireless data
network where each uplink is indexed by and maintains a
strictly concave utility function of SIR. Each mobile station

is served by a base station and each base station serves a set
of mobile stations. Let denote the path loss (channel gain)

from the transmitter of logical link to the receiver of logical
link , and be a matrix where the diagonal entries are 0 and
the off-diagonal entry is . Let the transmit power
of link be and the receiver noise be . The SIR on link is
defined as . Let be a di-
agonal matrix with entry . It turns out that the problem
of maximizing network utility over the feasible SIR region can
be stated as the following convex optimization:

(48)

where denotes the Perron–Frobenius eigenvalue (the largest
modulus eigenvalue) of the positive matrix . The con-
straint set can be verified to be convex but is clearly coupled in
a way that is not readily primal or dual decomposable.

Fortunately, we can “change coordinates” through a
reparametrization of the feasible SIR region by the left
eigenvectors of and (which have inter-
pretations of load and spillage vectors), rather than the right
eigenvectors of and (which have interpreta-
tions of power and interference vectors). This new description
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of the coupled constraint set leads to the following dual-based
distributed algorithm that only requires limited message passing
between each base station and the mobile stations it serves.

Dual Algorithm to solve joint SIR and power control (48):

• Parameters: step-size and utility functions .
• Initialization: arbitrary .
1) BS broadcasts the BS-load factor .
2) Compute the spillage-factor according to

.
3) Assign SIR values .
4) Measure the resulting interference .
5) Update the load factor in the ascent direction given

by:

6) Set and go to step 1 (until satisfying termination
criterion).

Proof of convergence of the above algorithm to global op-
timum (under certain curvature and fairness conditions on the
utility functions) and extensions to related problem formula-
tions can be found in [29].

V. CONCLUSION

The importance of “decomposability” to distributed solu-
tions is similar to that of “convexity” to efficient computation
of global optimum. Recognizing and utilizing decomposition
methods help network designers to systematically compare
modularized architectures and to distributively optimize re-
source allocation. As surveyed in this tutorial paper, one can
employ different combinations of the basic “building blocks”
of primal and dual decompositions, search among the alter-
natives of distributed algorithms, and try to reveal hidden
decomposability structures through different representations
of the same optimization problem. Some of these efforts still
depend on trial-and-error rather than a systematic method-
ology, and the analysis of some important attributes such as
rate of convergence still lack a fully developed theoretical
foundation. Towards a systematic comparison of alternative
decompositions, a key challenge is to study the metrics for
such comparison that are not easily quantified or do not have
obvious ordering relationships.
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