Optimization of Communication Systems Power Control in Cellular Networks

Mung Chiang Electrical Engineering Department, Princeton University

> ELE539A March 12, 2007

Overview

Part	Objective	Constraints	Mode	PHY
I	Energy efficiency		Game	Multi-carrier
II	Concave utility	Feasible region	Optimization	Single carrier
III	General	Individual QoS	Optimization	Single carrier

Acknowledgement: Tian Lan, Farhad Meshkati, Prashanth Hande, Sundeep Rangan, Chee Wei Tan, Daniel Palomar

References

- F. Meshkati, M. Chiang, H. V. Poor, and S. Schwartz, "A game-theoretic approach to energy-efficient power control in multi-carrier CDMA systems", *IEEE JSAC*, 2006.
- P. Hande, S. Rangan, and M. Chiang, "Distributed uplink power control for optimal SIR assignment in cellular data networks", *Proc. IEEE INFOCOM*, 2006.
- M. Chiang, C. W. Tan, D. Palomar, D. O'Neill, and D. Julian, "Power control by geometric programming", To appear in *IEEE Trans. Wireless Comm.*, 2007.

Part I

Multi-Carrier Energy-Efficiency Power Control Game

Related Work

- MacKenzie and Wicker 2001
- Xiao, Shroff and Chong 2001
- Alpcan and Altman 2001
- Saraydar, Mandayam, and Goodman 2002
- Yu, Ginis, and Cioffi 2002
- Sung and Wong 2003

Open problems:

- Energy efficiency as utility function ⇒ Non-quasiconcave utilities
- Multiple carriers ⇒ Vector strategy

Energy Efficiency Utility Function

l: carrier index. D carriers

k: user index. K users

$$\gamma_{kl} = \frac{p_{kl}h_{kl}}{\eta + \frac{1}{N}\sum_{j\neq k}p_{jl}h_{jl}}$$
: SIR for user k on carrier l

 $f(\gamma_{kl})$: reliability function (sigmoidal function)

Throughput: $T_{kl} = R_k f(\gamma_{kl})$

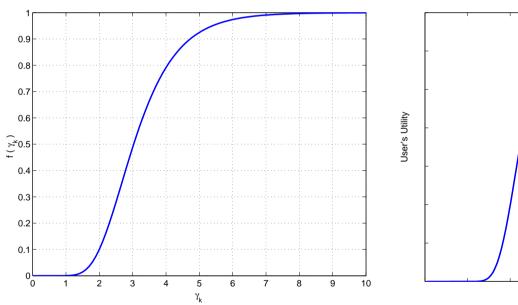
Power: p_{kl}

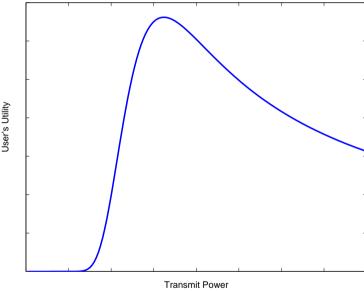
Energy efficiency utility function: $u_k = \frac{\sum_{l=1}^{D} T_{kl}}{\sum_{l=1}^{D} p_{kl}}$

Local and selfish utility maximization: $\max_{\mathbf{p}_k} u_k$

Game: $[\{1, 2, \dots, K\}, \{[0, P_{max}]_k^D\}, \{u_k\}]$

Reliability Function and Energy Efficiency Utility





Multi-Carrier Energy Efficiency Maximization

 γ^* : unique positive solution of $f(\gamma) = \gamma f'(\gamma)$

 p_{kl}^* : transmit power needed to achieve SIR γ^* (or P_{max} if γ^* is not attainable)

 L_k : argmin_l p_{kl}^* ('best' carrier)

Theorem: Energy efficiency maximizer is $p_{kl}=p_{kL_k}^{\ast}$ for $l=L_k$ and 0 otherwise

Only transmit on the 'best' carrier

Reduces number of possibilities of NE to D^K

Characterization of NE

Channel gains $\{h_{jl}\}$ determine NE possibilities

First assume that γ^* is attainable by all users (large enough processing gain N)

Define
$$\Theta_n = \frac{1}{1 - (n-1)\frac{\gamma^*}{N}}, \quad n = 0, 1, ..., K$$

 $(0 < \Theta_0 < \Theta_1 = 1 < \Theta_2 < ... < \Theta_K)$

n(i): number of users transmitting on carrier i

Theorem: For user k to transmit on carrier l at NE:

$$\frac{h_{kl}}{h_{ki}} > \frac{\Theta_{n(l)}}{\Theta_{n(i)}}\Theta_0, \quad \forall i \neq l$$

and in this case, $p_{kl}^* = \gamma^* \sigma^2 \frac{\Theta_{n(l)}}{h_{kl}}$

Existence and Uniqueness of NE

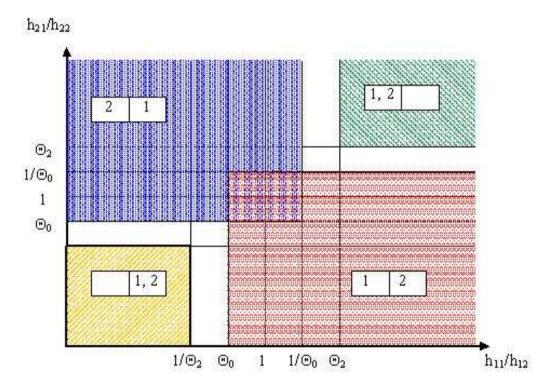
Existence of NE: Sufficient condition is that channel gains satisfy K(D-1) inequalities simultaneously

Uniqueness of NE: Not guaranteed

(K=2,D=2) case. Four possibilities:

- (1,2|): $\frac{h_{11}}{h_{12}} > \Theta_2$ and $\frac{h_{21}}{h_{22}} > \Theta_2$
- ullet (|1,2): $rac{h_{11}}{h_{12}} < rac{1}{\Theta_2}$ and $rac{h_{21}}{h_{22}} < rac{1}{\Theta_2}$
- (1|2): $\frac{h_{11}}{h_{12}} > \Theta_0$ and $\frac{h_{21}}{h_{22}} < \frac{1}{\Theta_0}$
- ullet (2|1): $rac{h_{11}}{h_{12}} < rac{1}{\Theta_0}$ and $rac{h_{21}}{h_{22}} > \Theta_0$

Example



Homogeneity of channel gains: If either h_{11}/h_{22} or h_{22}/h_{11} belongs to $[1/\Theta_2^2,\Theta_0^2]$, then there does not exist NE

Two-Carrier Two-User Case

Rayleigh fading channel: $h_{kl} = \frac{c}{d_k^{-4}} a_{kl}^2$

 a_{kl} : i.i.d. and have Rayleigh distribution with mean 1

 X_1 : number of users transmitting over first carrier at NE

$$P_{X_1}(0) = P_{X_1}(2) = \begin{cases} 0 & \text{if } N \leq \gamma^* \\ \left(\frac{1}{1+\Theta_2}\right)^2 & \text{if } N > \gamma^* \end{cases},$$

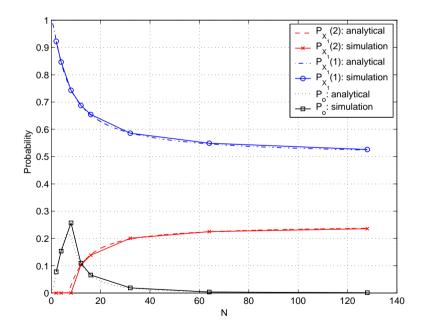
$$P_{X_1}(1) = 2\left(\frac{1}{1+\Theta_0}\right)^2 - \left(\frac{1-\Theta_0}{1+\Theta_0}\right)^2,$$

$$P_o = \begin{cases} 2\left(\frac{\Theta_0}{1+\Theta_0}\right)^2 & \text{if } N \leq \gamma^* \\ 2\left[\left(\frac{\Theta_0}{1+\Theta_0}\right)^2 - \left(\frac{1}{1+\Theta_2}\right)^2\right] & \text{if } N > \gamma^* \end{cases}.$$

Two-Carrier Case

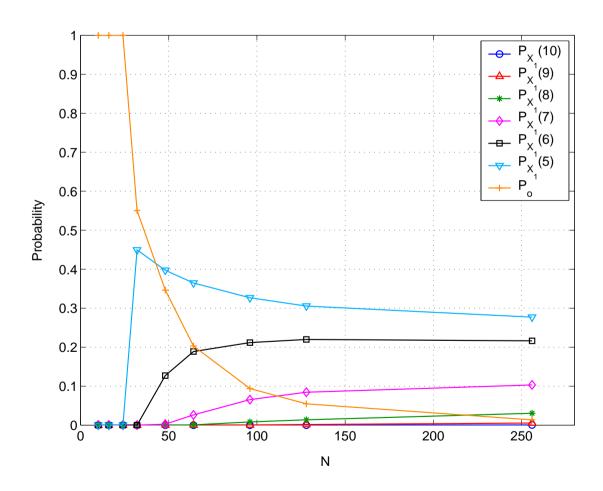
As processing gain N becomes large, there exists a unique NE well approximated by:

$$Pr\{X_1 = m\} \approx C_m^K(0.5)^K, \ m = 0, 1, \dots, K$$



Example (2 carriers, 10 users)

No NE when N is too small, and always exists NE as $N \to \infty$



Distributed Algorithm

Best response, iterative, distributed

Algorithm:

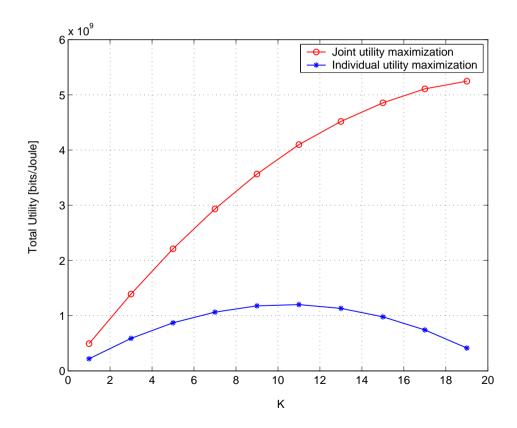
- 1. k = 1
- 2. User k picks "best" carrier and transmits on it only, at power level to attain SIR γ^*
- 3. $k = (k+1) \mod K$

Theorem: Above algorithm converges to NE (when it exists) for all two-user and three-user cases

Observation: Always converges to NE in all cases

Performance Gain

Comparison between our vector-valued strategy game and optimization over individual carriers



Part II

Distributed Jointly Optimal SIR Assignment and Power Control

Related Work

Uplink power control in multi-cellular networks

• Fixed SIR: distributed power control:

Zander 1992, Foschini Miljanic 1993, Mitra 1993, Yates 1995, Bambos Pottie 2000

• Nash equilibrium for joint SIR assignment and power control:

Saraydar, Mandayam, and Goodman 2001, 2002

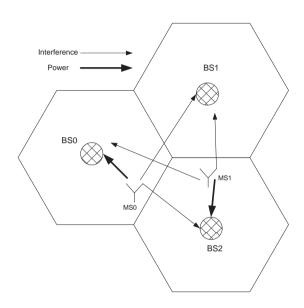
• Centralized computation for globally optimal joint SIR assignment and power control:

Chiang 2004, O'Neill, Julian, and Boyd 2004, Boche and Stanczak 2004

Open Problem: Distributed and optimal joint SIR assignment and power control

Solved by Hande, Rangan, and Chiang 2006

System Model



M MS and N BS

Each MS i served by a BS σ_i

Each BS k serving a set of MS: S_k

 C_i : set of interference links

- Non-orthogonal system: $C_i = \{j \mid j \neq i\}$
- Orthogonal system: $C_i = \{j \mid \sigma_j \neq \sigma_i\}$

Notation

 h_{kj}^0 : absolute path gain from MS j to BS k

 $h_{kj} = h_{kj}^0/h_{\sigma_ij}^0$: normalized path gain

 $M \times M$ matrix **G**: path gain matrix

$$G_{ij} = \begin{cases} h_{\sigma_i j} & \text{if } j \in C_i, \\ 0 & \text{if } j \notin C_i, \end{cases}$$

 p_j : received signal power on link j at its serving BS σ_j

 q_j : total interference and noise at the BS serving MS j

 η_j : noise on link j

 γ_j : SIR achieved by link j. $\gamma_j = p_j/q_j$

$$\mathbf{q} = \mathbf{G}\mathbf{p} + \boldsymbol{\eta} = \mathbf{G}\mathbf{D}(\boldsymbol{\gamma})\mathbf{q} + \boldsymbol{\eta}$$
 $\mathbf{p} = \mathbf{D}(\boldsymbol{\gamma})\mathbf{G}\mathbf{p} + \mathbf{D}(\boldsymbol{\gamma})\boldsymbol{\eta}$

Review: Feasibility

Not all SIR assignments are feasible

 $\gamma \succ 0$ is feasible if there exists an interference vector, $\mathbf{q} \succeq 0$, and power vector $\mathbf{p} \succeq 0$, satisfying basic equations

Lemma (Zander 1992):

If $\eta = 0$, $\gamma \succ 0$ is feasible iff $\rho(\mathbf{GD}(\gamma)) = 1$. Given a feasible γ , $\mathbf{p}(\gamma)$ is the right Perron-Frobenious eigenvector of $\mathbf{GD}(\gamma)$ and $\mathbf{q}(\gamma)$ is the right Perron-Frobenious eigenvector of $\mathbf{D}(\gamma)\mathbf{G}$

If $\eta \neq 0$, $\gamma \succ 0$ is feasible iff $\rho(\mathbf{GD}(\gamma)) < 1$. Given a feasible γ ,

$$\mathbf{p}(\gamma) = (\mathbf{I} - \mathbf{D}(\gamma)\mathbf{G})^{-1}\mathbf{D}(\gamma)\eta$$

$$\mathbf{q}(\boldsymbol{\gamma}) = (\mathbf{I} - \mathbf{GD}(\boldsymbol{\gamma}))^{-1} \boldsymbol{\eta}$$

Feasible Regions

Assume $\eta \neq 0$, feasible region:

$$\mathbf{B} = \{ \boldsymbol{\gamma} \succ 0 : \rho(\mathbf{GD}(\boldsymbol{\gamma})) < 1 \}$$

Finite power case: given $\rho \in [0,1)$

$$\mathbf{B}_{\rho} = \{ \boldsymbol{\gamma} \succ 0 \mid \rho(\mathbf{GD}(\boldsymbol{\gamma})) \le \rho \}$$

Power constrained case:

$$\mathbf{B}(\mathbf{p}^m) = \{ \boldsymbol{\gamma} \in \mathbf{B} \mid \mathbf{p}(\boldsymbol{\gamma}) \leq \mathbf{p}^m \}$$

Interference constrained case:

$$\mathbf{B}(\mathbf{q}^m) = \{ \boldsymbol{\gamma} \in \mathbf{B} \mid \mathbf{q}(\boldsymbol{\gamma}) \leq \mathbf{q}^m \}$$

Pareto-Optimal Boundary

Theorem on Pareto-Optimal Boundary:

	Feasible Region	Pareto-optimal Boundary
1	$\mathbf{B} = \{ \boldsymbol{\gamma} : \rho(\mathbf{GD}(\boldsymbol{\gamma})) < 1 \}$	$\partial \mathbf{B} = \{ \boldsymbol{\gamma} : \rho(\mathbf{GD}(\boldsymbol{\gamma})) = 1 \}$
2	$\mathbf{B}_{ ho} = \{ oldsymbol{\gamma} : ho(\mathbf{GD}(oldsymbol{\gamma})) < ho \}$	$\partial \mathbf{B}_{\rho} = \{ \boldsymbol{\gamma} : \rho(\mathbf{GD}(\boldsymbol{\gamma})) = \rho \}$
3	$\mathbf{B}(\mathbf{p}^m) = \{ \boldsymbol{\gamma} : \rho(\mathbf{GD}(\boldsymbol{\gamma})) < 1, \mathbf{p} \leq \mathbf{p}^m \}$	$\partial \mathbf{B}(\mathbf{p}^m) = \{ \boldsymbol{\gamma} : \rho < 1, \mathbf{p} \leq \mathbf{p}^m, \exists i : p_i = p_i^m \}$
4	$\mathbf{B}(\mathbf{q}^m) = \{ \boldsymbol{\gamma} : \rho(\mathbf{GD}(\boldsymbol{\gamma})) < 1, \mathbf{p} \leq \mathbf{q}^m \}$	$\partial \mathbf{B}(\mathbf{q}^m) = \{ \boldsymbol{\gamma} : \rho < 1, \mathbf{q} \leq \mathbf{q}^m, \exists i : q_i = q_i^m \}$

Load-Spillage Characterization

Lemma: $\gamma \succ 0$ is feasible (and ρ -optimal) iff there exists a $\mathbf{s} \succ 0$ and $\rho \in [0,1)$ such that

$$\mathbf{s}^T \mathbf{G} \mathbf{D}(\boldsymbol{\gamma}) = \rho \mathbf{s}^T$$

Let
$$\mathbf{r}(\mathbf{s}) = \mathbf{G}^T \mathbf{s}$$

A new view on SIR: $\gamma(s, \rho) = \rho s/r(s)$

s and r are left eigenvectors of the matrices, $\mathbf{D}(\gamma)\mathbf{G}$ and $\mathbf{GD}(\gamma)$ (corresponding to eigenvalues ρ)

s: Load vector: $s_i = r_i \gamma_i / \rho$

r: Spillage vector: $r_i = \sum_j G_{ji} s_j$

Alternative to power-interference characterization

Key to distributed algorithm

Attaining Pareto-Optimality

Algorithm:

Initialize: Fixed $\mathbf{s} \succ 0$ and $\rho \in [0,1)$.

- 1. BS k broadcasts the BS-load factor $\ell_k = \sum_{j \in S_k} s_j$.
- 2. Compute the spillage factor $r_i = \sum_{j \neq i, j \in S_{\sigma_i}} s_j + \sum_{k \neq \sigma_i} h_{ki} \ell_k$.
- 3. Assign SIR values $\gamma_i = \rho s_i/r_i$.

Stop. The resulting SIR vector $\gamma = \gamma(s, \rho)$.

Alternative versions: MS-Control or BS-Control

Power and Interference Constrained Cases

Introduce power price vector $\boldsymbol{\nu}$

Algorithm:

Initialize: fixed $s_i[0] \succ 0, \nu_i[0] \succeq 0$.

- 1. BS k broadcasts the BS-load factor $\ell_k[t] = \sum_{j \in S_k} s_j[t]$.
- 2. Compute the spillage factor $r_i[t] = \sum_{j \neq i, j \in S_{\sigma_i}} s_j[t] + \sum_{k \neq \sigma_i} h_{ki} \ell_k[t] + \nu_i.$
- 3. Assign SIR $\gamma_i[t] = s_i/r_i[t]$ for MS i: .
- 4. Measure resulting power $p_i[t]$.
- 5. Update power price $\nu_i[t+1] = [\nu_i[t] + \delta(p_i[t] p_i^m)]^+$.

Continue: t := t + 1.

Utility Maximization

Which Pareto-optimal γ to pick?

Maximize concave utility functions over Pareto-optimal boundary Utility functions $U(\gamma) = \sum_i U_i(\gamma_i)$:

- ullet Strictly increasing, twice differentiable with bounded derivatives, strictly concave in $\log \gamma_i$
- ullet No starvation: As $\gamma_i o 0$, $U_i(\gamma_i) o -\infty$

Intuition: Assign higher SIR to

- MS with good channel condition (power-interference view)
- MS with worse interfering channel condition (load-spillage view)

Distributed Algorithm

Algorithm:

Initialize: Arbitrary $s[0] \succ 0$.

- 1. BS k broadcasts the BS-load factor $\ell_k[t] = \sum_{i \in S_k} s_i[t]$.
- 2. Compute the spillage-factor $r_i[t]$ by $\sum_{j \neq i, j \in S_{\sigma_i}} s_j + \sum_{k \neq \sigma_i} h_{ki} \ell_k$.
- 3. Assign SIR values $\gamma_i[t] = s_i[t]/r_i[t]$.
- 4. Measure the resulting interference $q_i[t]$.
- 5. Update the load factor $s_i[t]$:

$$s_i[t+1] = s_i[t] + \delta \Delta s_i[t].$$

where
$$\Delta s_i = rac{U_i'(\gamma_i)\gamma_i}{q_i} - s_i$$

Continue: t := t + 1.

Convergence and Optimality

Theorem: For sufficiently small step size $\delta>0$, Algorithm converges to the globally optimal solution of

maximize
$$U(\gamma)$$

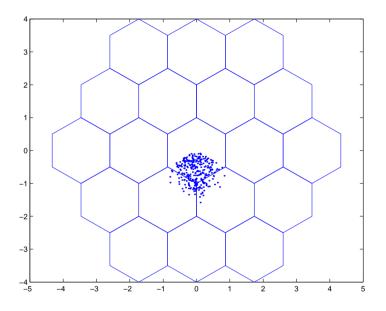
subject to $\rho(\mathbf{D}(\gamma)\mathbf{G}) \leq 1$

Proof: Key ideas:

- Develop ascent direction (most involved)
- Evaluate KKT conditions
- Guarantee Lipschitz condition

Extend to power and interference constrained cases

Simulation



3GPP Uplink Evaluation Tool: 19 cells in three hexagons

Each cell divided into three 120 degree sectors, 57 base station sectors

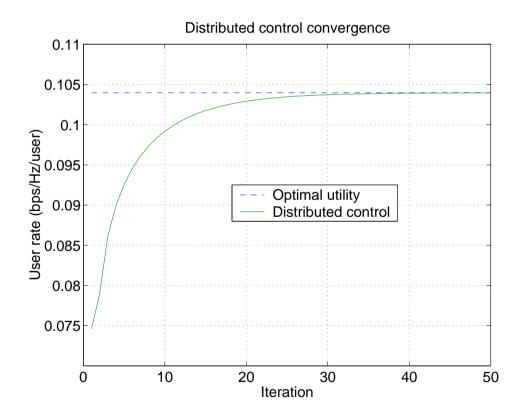
Uniform distribution of MS

Antenna: 65 degree 3 dB bandwidth, 15 dB antenna gain

Channel: Pass loss exponent: 3.7, log-normal shadowing: 8.9 dB

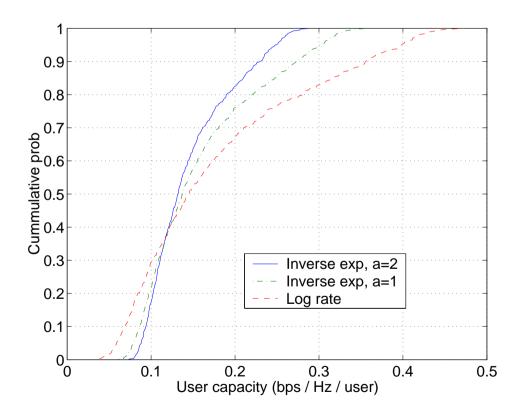
Convergence

10 MS per sector, 570 MS in total Fast convergence with distributed control



Utility

Effects of shapes of utility function



Sector Capacity and Fairness

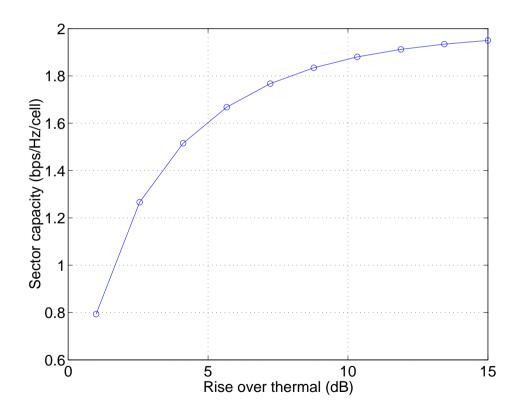
Tradeoff between efficiency and fairness

Utility function	Sector capacity (bps / Hz / sector)	10% Worst User capacity (bps / Hz)
Log QoS	1.90	0.055
Inv exp, $a=1$	1.58	0.086
Inv exp, $a=2$	1.46	0.094
Inv exp, $a=3$	1.46	0.097

Spectral Efficiency and MS Power Consumption

Interference-limited version of distributed algorithm

Tradeoff between sector capacity and Rise-Over-Thermal limit



Part III

Nonconvex Formulations of Constrained Power Control Optimization

Related Work

- O'Neill, Chiang, Julian, and S. Boyd 2002
- Kandukuri and Boyd 2002
- Boche and Stanczak 2004
- Papandriopoulos, Dey, and Evans 2005
- Chiang 2005

Convexity and SIR Regime

Constrained optimization formulations (more general than concave utility maximization over convex feasible region):

Objective: Network-wide metric (e.g., system throughput, min max fairness)

Constraints: Individual user QoS requirements (e.g., rate, delay, outage)

SIR regime matters:

- High SIR: pseudo-nonconvexity
- Medium to Low SIR: real nonconvexity

Notation

Signal Interference Ratio:

$$SIR_i(\mathbf{P}) = \frac{P_i h_{ii}}{\sum_{j \neq i}^{N} P_j h_{ij} + \eta_i}.$$

Attainable data rate at high SIR:

$$c_i(\mathbf{P}) = \frac{1}{T} \log_2(\mathbf{1} + KSIR_i(\mathbf{P})).$$

Outage probability on a wireless link:

$$P_{o,i}(\mathbf{P}) = \mathbf{Prob}\{\mathsf{SIR}_i(\mathbf{P}) \leq \mathsf{SIR}_{th}\}$$

Average (Markovian) queuing delay with Poisson(Λ_i) arrival:

$$\bar{D}_i(\mathbf{P}) = \frac{1}{c_i(\mathbf{P}) - \Lambda_i}$$

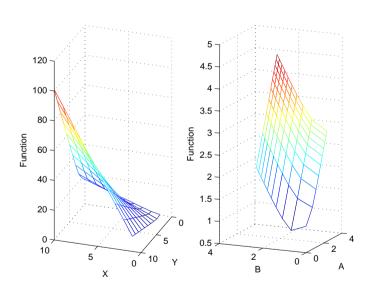
GP Formulations

Any combination is GP in high SIR Any combination without (C,D,c) is GP in any SIR

Objective Function	Constraints	
(A) Maximize R_{i^*}	(a) $R_i \geq R_{i,min}$	
(B) Maximize $\min_i R_i$	(b) $P_{i1}G_{i1} = P_{i2}G_{i2}$	
(C) Maximize $\sum_i R_i$	(c) $\sum_{i} R_{i} \geq R_{system,min}$	
(D) Maximize $\sum_i w_i R_i$	(d) $P_{o,i} \leq P_{o,i,max}$	
(E) Minimize $\sum_i P_i$	(e) $0 \le P_i \le P_{i,max}$	

GP and Convexity

Convexity is **not** invariant under nonlinear change of coordinates





GP and **SOS**

Minimize a sum of monomials with upper bound constraints on other sums

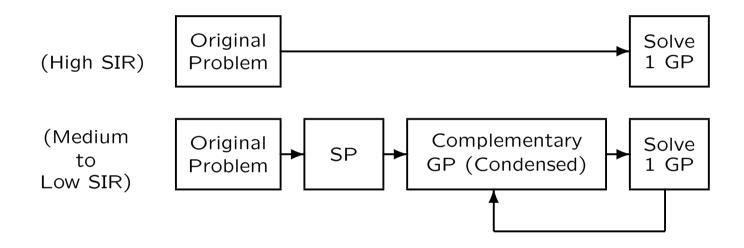
Different definitions of monomial: $c \prod_j x_j^{a^{(j)}}$

	GP	PMoP	SP
c	R_+	R	R
$a^{(j)}$	R	\mathcal{Z}_+	R
x_j	R ₊₊	R ₊₊	R ₊₊

- GP (Polynomial time)
- PMoP: constrained polynomial minimization over the positive quadrant (SOS)
- SP: Signomial Programming (Condensation)

1 GP or Many GPs

SIR is an inverted posynomial in P but 1 + SIR is not



SOS: successive SDP approximations

• Finite time convergence to global optimum

Condensation: successive GP approximations

• Asymptotic convergence to local optimum

Condensation Method

Lemma: $g(\mathbf{x}) = \sum_i u_i(\mathbf{x})$ is a posynomial

$$g(\mathbf{x}) \ge \tilde{g}(\mathbf{x}) = \prod_{i} \left(\frac{u_i(\mathbf{x})}{\alpha_i}\right)^{\alpha_i}$$

If $\alpha_i = u_i(\mathbf{x}_0)/g(\mathbf{x}_0)$, $\forall i$, then $\tilde{g}(\mathbf{x}_0)$ is the best monomial approximation Algorithm:

- 1) Evaluate the denominator posynomial of signomials with the given P.
- 2) Compute for each term i in this posynomial,

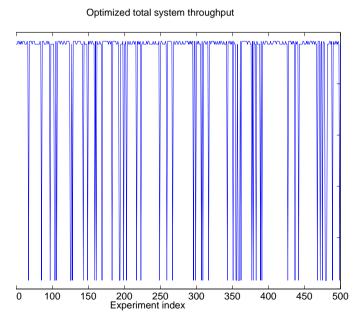
$$\alpha_i = \frac{\text{value of } i \text{th term in posynomial}}{\text{value of posynomial}}.$$

- 3) Condense the denominator posynomial into a monomial.
- 4) Solve the resulting GP using an interior point method.
- 5) Go to step 1 using P of step 4.
- 6) Terminate the kth loop if $\|\mathbf{P}^{(k)} \mathbf{P}^{(k-1)}\| \leq \epsilon$

Example

Problem formulation: System throughput maximization under individual user's rate and outage constraints

96% of the time: attains global optimum



Other Extensions

- Effective heuristics for jumping out of local optimum
- Signomial constraints in constraints

Distributed GP Power Control

Generally applicable to coupled but additive objective function:

minimize
$$\sum_{i} f_i(x_i, \{x_j\}_{j \in I(i)})$$

Log change of variables for convexity:

minimize
$$\sum_i f_i(e^{y_i}, \{e^{y_j}\}_{j \in I(i)})$$

Introduce auxiliary variables (local copies) and consistency constraints:

minimize
$$\sum_{i} f_{i}(e^{y_{i}}, \{e^{y_{ij}}\}_{j \in I(i)})$$
 subject to
$$y_{ij} = y_{j}, \forall j \in I(i), \forall i.$$

Lagrangian relaxation for dual decomposition with consistency pricing:

$$L(\{y_i\}, \{y_{ij}\}; \{\gamma_{ij}\}) = \sum_{i} f_i(e^{y_i}, \{e^{y_{ij}}\}_{j \in I(i)}) + \sum_{i} \sum_{j \in I(i)} \gamma_{ij}(y_j - y_{ij})$$
$$= \sum_{i} L_i(y_i, \{y_{ij}\}; \{\gamma_{ij}\})$$

Distributed GP Power Control

Lagrange dual problem:

$$\max_{\{\gamma_{ij}\}} g(\{\gamma_{ij}\}) = \sum_{i} \min_{y_i, \{y_{ij}\}} L_i(y_i, \{y_{ij}\}; \{\gamma_{ij}\})$$

Dual ascent algorithm with consistency pricing update:

$$\gamma_{ij}(t+1) = \gamma_{ij}(t) + \delta(t)(y_j(t) - y_{ij}(t))$$

Message passing needed:

- $\mathcal{O}(N^2)$ as above
- \bullet $\mathcal{O}(N)$ by utilizing interference terms