ELE539A: Optimization of Communication Systems Lecture 3B: Network Flow Problems

Professor M. Chiang Electrical Engineering Department, Princeton University

February 12, 2007

Lecture Outline

- Network flow problems
- Problem 1: Maximum flow problem
- Ford Fulkerson algorithm
- Problem 2: Shortest path routing
- Bellman Ford algorithm
- Simple IP routing: RIP
- Dynamic Programming

Graph Theory Notation

G = (V, E): directed graph with vertex set V and edge set E

 b_i : external supply to each node $i \in V$

 u_{ij} : capacity of each edge $(i,j) \in E$

 c_{ij} : cost per unit flow on edge $(i,j) \in E$

 $I(i) = \{j \in V | (j,i) \in E\}$: set of start nodes of incoming edges to i

 $O(i) = \{j \in V | (i, j) \in E\}$: set of end nodes of outgoing edges from i

Sources: $\{i|b_i>0\}$. Sinks: $\{i|b_i<0\}$

Feasible flow f:

- Flow conservation: $b_i + \sum_{j \in I(i)} f_{ji} = \sum_{j \in O(i)} f_{ij}, \ \forall i \in V$
- Capacity constraint: $0 \le f_{ij} \le u_{ij}$

Basic Formulation

Network flow problem:

minimize
$$\sum_{(i,j)\in E} c_{ij} f_{ij}$$
 subject to
$$b_i + \sum_{j\in I(i)} f_{ji} = \sum_{j\in O(i)} f_{ij}, \ \forall i\in V$$

$$0\leq f_{ij}\leq u_{ij}$$

In matrix notation as a LP:

minimize
$$c^T f$$
 subject to $Af = b$
$$0 \leq f \leq u$$

where $A \in \mathbf{R}^{|V| \times |E|}$ is defined as

$$A_{ik} = \left\{ \begin{array}{ll} 1, & i \text{ is the start node of edge } k \\ -1, & i \text{ is the end node of edge } k \\ 0, & \text{otherwise} \end{array} \right.$$

Special Cases

- Maximum flow problem (this lecture)
- Shortest path problem (this lecture)
- Transportation problem (uncapacitated bipartite graph)

minimize
$$\sum_{i,j} c_{ij} f_{ij}$$
 subject to $\sum_{i=1}^m f_{ij} = d_j, \ j=1,\ldots,n$ $\sum_{j=1}^n f_{ij} = s_i, \ i=1,\ldots,m$ $f_{ij} \geq 0, \ i=1,\ldots,m, j=1,\ldots,n$

Variables f_{ij} . Constants d_j, s_i, c_{ij}

• Assignment problem (homework):

 $m=n, d_j=s_i=1$ in transportation problem

Maximum Flow Problem

maximize
$$b_s$$
 subject to $Af=b$
$$b_t=-b_s$$

$$b_i=0, \ \forall i\neq s,t$$

$$0\leq f_{ij}\leq u_{ij}$$

Reformulated as network flow problem:

- Costs for all edges are zero
- ullet Introduce a new edge (t,s) with infinite capacity and cost -1
- ullet Minimize total cost is equivalent to maximize f_{ts}

Ford Fulkerson Algorithm

- 1. Start with feasible flow f
- 2. Search for an augmenting path P
- 3. Terminate if no augmenting path
- 4. Otherwise, if flow can be pushed, push $\delta(P)$ units of flow along P and repeat Step 2
- 5. Otherwise, terminate

Q: How to find augmenting path?

Q: How much flow can be pushed?

Augmenting Path

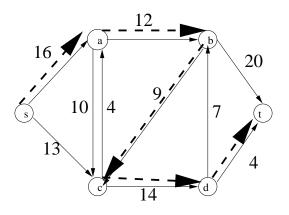
Idea: find a path where we can increase flow along every forward edge and decrease flow along backward edge by the same amount. Still satisfy constraints. Increase objective function

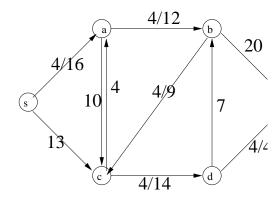
Augmenting path: a path from s to t such that $f_{ij} < u_{ij}$ on forward edges and $f_{ij} > 0$ on backward edges

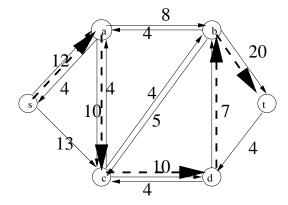
Augmenting flow amount along augmenting path P:

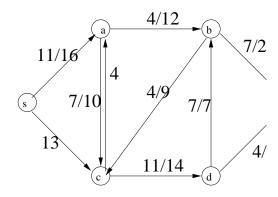
$$\delta(P) = \min \left\{ \min_{(i,j) \in F} (u_{ij} - f_{ij}), \min_{(i,j) \in B} f_{ij} \right\}$$

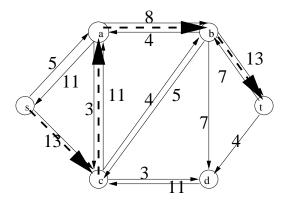
Can search for augmenting path by following possible paths leading from s and checking conditions above

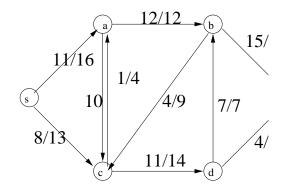


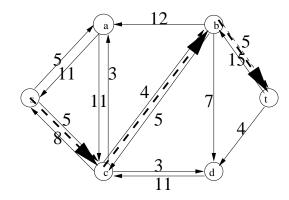


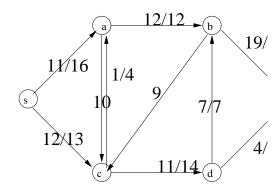


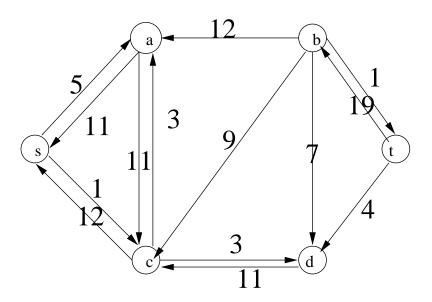












Max Flow Min Cut Theorem

Theorem: If optimal value is finite, Ford Fulkerson algorithm terminates with an optimal flow

Theorem: If edge capacities u_{ij} are integers, edge flow variables remain integer

Definition: cut S is a subset of V such that $s \in S$ and $t \notin S$

Definition: capacity of cut C(S) is sum of edge capacities on edges that cross from S to its complement:

$$C(S) = \sum_{(i,j)\in E|i\in S, j\notin S} u_{ij}$$

Theorem: Value of maximum flow $\max b_s$ equals minimum cut capacity $\min_S C(S)$

Shortest Path Routing

Given a directed graph with vertex set V and edge set E

Each edge (i,j) has cost or length c_{ij}

Allow negative length edges, but no negative length cycles

Our development follows DP algorithm

Other approaches (e.g., duality) and algorithms (e.g., Dijstrak) possible

Consider all-to-one shortest path routing with destination vertex n

Bellman Ford Algorithm

Let $p_i(t)$ be length of shortest path from i to n using at most t edges, with $p_i(t) = \infty$ if no such path exists

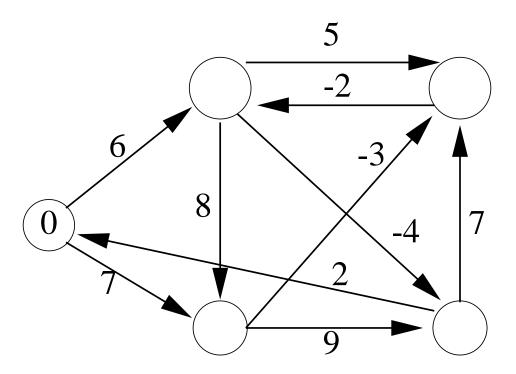
Let
$$p_n(t) = 0$$
, $\forall t$ and $p_i(0) = \infty$, $\forall i \neq n$

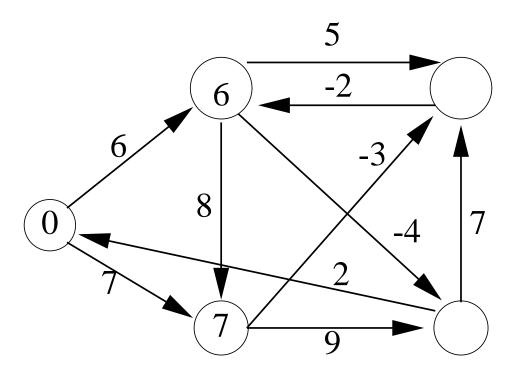
 $p_i(t+1)$ consists of two parts:

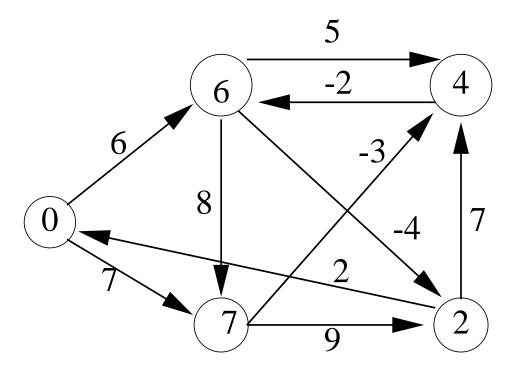
- ullet cost of getting from i to a neighboring k
- ullet cost of getting from k to destination n

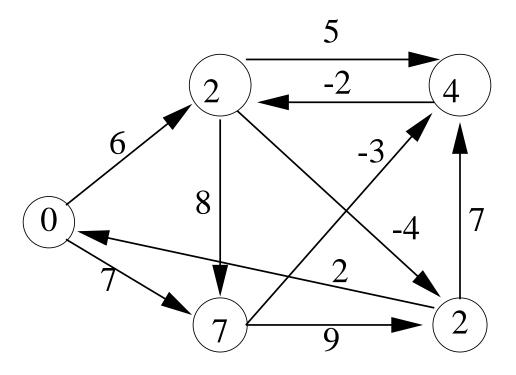
Pick the minimum total cost:

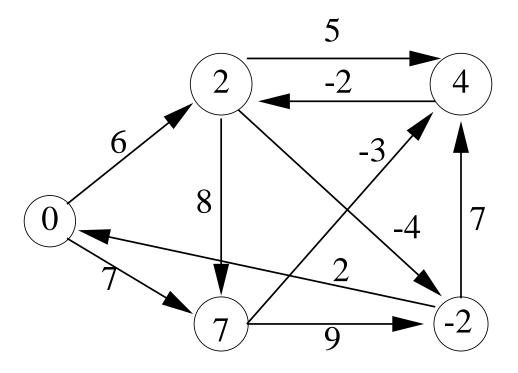
$$p_i(t+1) = \min_{k \in \mathcal{O}(i)} \{c_{ik} + p_k(t)\}$$











IP Routing

Basic versions:

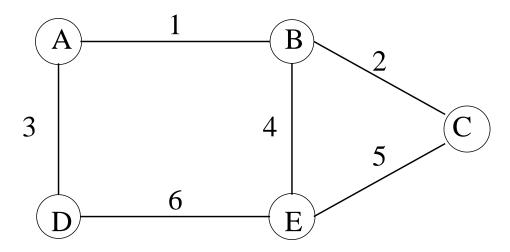
- IGP (e.g., RIP): distance-vector based
- IGP (e.g., OSPF, IS-IS): link-state based
- EGP (e.g., BGP4): across Autonomous Systems

Extensions:

- Multicast routing
- Mobile IP
- Mobile wireless ad hoc routing
- QoS routing

RIP Routing

Simple example (homework):



Practical concerns:

- Loop avoidance
- Stability
- Speed of convergence
- Scalability

Sequential Optimization

Additive cost in discrete time dynamic system:

$$x_{k+1} = f_k(x_k, u_k, w_k), \quad k = 0, \dots, N-1$$

State: $x_k \in S_k$

Control: $u_k \in U_k(x_k)$

Random disturbance: $w_k \in D_k$ with distribution conditional on x_k, u_k

Admissible policies:

$$\pi = \{\mu_0, \dots, \mu_{N-1}\}$$

where $\mu_k(x_k) = u_k$ such that $\mu_k(x_k) \in U_k(x_k)$ for all $x_k \in S_k$

Given cost functions $g_k, k = 0, ..., N$, expected cost of π starting at x_0 :

$$J_{\pi}(x_0) = \mathbf{E}\left(g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right)$$

Optimal policy π^* minimizes J over all admissible π , with optimal cost:

$$J^*(x_0) = J_{\pi^*}(x_0) = \min_{\pi \in \Pi} J_{\pi}(x_0)$$

Principle of Optimality

Given optimal policy $\pi^* = \{\mu_0^*, \dots, \mu_{N-1}^*\}$. Consider subproblem where at time i and state x_i , minimize cost-to-go function from time i to N:

$$\mathbf{E}\left(g_N(x_N) + \sum_{k=i}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right)$$

Then truncated optimal policy $\{\mu_i^*,\dots,\mu_{N-1}^*\}$ is optimal for subproblem

Tail of an optimal policy is also optimal for tail of the problem

DP Algorithm

For every initial state x_0 , $J^*(x_0)$ equals $J_0(x_0)$, the last step of the following backward iteration:

$$J_{N}(x_{N}) = g_{N}(x_{N})$$

$$J_{k}(x_{k}) = \min_{u_{k} \in U_{k}(x_{k})} \mathbf{E} \left(g_{k}(x_{k}, u_{k}, w_{k}) + J_{k+1}(f_{k}(x_{k}, u_{k}, w_{k})) \right), \quad k = 0, \dots, N-1$$

If $\mu_k^*(x_k) = u_k^*$ are the minimizers of $J_k(x_k)$ for each x_k and k, then policy

$$\pi^* = \{\mu_0^*, \dots, \mu_{N-1}^*\}$$

is optimal

Proof: induction and Principle of Optimality

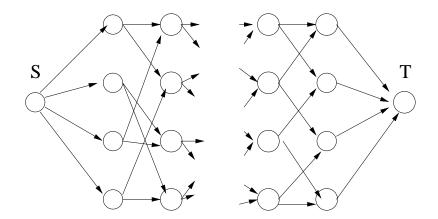
Deterministic Finite-State DP

• No stochastic perturbation:

$$x_{k+1} = f_k(x_k, \mu_k(x_k))$$

ullet Finite state space: S_k are finite for all k

Deterministic finite-state DP is equivalent to shortest path problem in trellis diagram



Lecture Summary

- Network flow problems are special cases of LP that model a wide range of problems in networking and problems modelled by graphs.
- Maximum flow problems and shortest path problems are two important special cases of network flow problems that can be efficiently solved by special purpose distributed algorithms.
- DP principle is extremely powerful for sequential optimization.
- We will later study powerful generalizations of Network, Flow Problems to Network Utility Maximization.
- Practical issues in IP routing (IGP and BGP) to be taught in Rexford guest lecture.

Reading: Section 7.1, 7.2, 7.5, and 7.9 in Bertsimas and Tsitsiklis