
Network Utility Maximization With Nonconcave Utilities Using
Sum-of-Squares Method

Maryam Fazel Mung Chiang
Control and Dynamical Systems, Caltech Electrical Engineering, Princeton University

Abstract—Network Utility Maximization problem has re-
cently been used extensively to analyze and design dis-
tributed rate allocation in networks such as the Internet.
A major limitation in the state-of-the-art is that user utility
functions are assumed to be strictly concave functions, mod-
eling elastic flows. Many applications require inelastic flow
models where nonconcave utility functions need to be maxi-
mized. It has been an open problem to find the globally op-
timal rate allocation that solves nonconcave network utility
maximization, which is a difficult nonconvex optimization
problem.

We provide a centralized algorithm for off-line analysis
and establishment of performance benchmark for noncon-
cave utility maximization. Based on the semi-algebraic ap-
proach to nonlinear optimization, we employ convex sum-
of-squares relaxations for polynomial optimization, solved
by a sequence of semidefinite programs, to obtain increas-
ingly tighter upper bounds on total achievable utility. Sur-
prisingly, in all our experiments, a very low order and
often a minimal order relaxation yields not just a bound
on attainable network utility, but also the globally maxi-
mized network utility. Using a sufficiency test, whenever
the bound can be proven to be exact, a globally optimal
rate allocation is recovered. In addition to polynomial utili-
ties, sigmoidal utilities can be transformed into polynomials
and are handled by our algorithm. Furthermore, using two
alternative representation theorems for positive polynomi-
als, we present price interpretations in economics terms for
these relaxations, extending the classical interpretation of
independent congestion pricing on each link to pricing for
the simultaneous usage of multiple links.

Keywords: Nonconvex optimization, network util-
ity, rate allocation, algebraic geometry, sum of squares
method

I. I NTRODUCTION

A. Background: Basic network utility maximization

Since the publication of the seminal paper [6] by Kelly,
Maulloo, and Tan in 1998, the framework of Network
Utility Maximization (NUM) has found many applica-
tions in network rate allocation algorithms and Internet
congestion control protocols (e.g., [10]), as well as user

behavior models and network efficiency-fairness charac-
terization. By allowing nonlinear concave utility objec-
tive functions, NUM substantially expands the scope of
the classical LP-based Network Flow Problems.

Consider a communication network withL links, each
with a fixed capacity ofcl bps, andS sources (i.e., end
users), each transmitting at a source rate ofxs bps. Each
sources emits one flow, using a fixed setL(s) of links in
its path, and has a utility functionUs(xs). Each linkl is
shared by a setS(l) of sources. Network Utility Max-
imization (NUM), in its basic version, is the following
problem of maximizing the total utility of the network∑

s Us(xs), over the source ratesx, subject to linear flow
constraints

∑
s:l∈L(s) xs ≤ cl for all links l:

maximize
∑

s Us(xs)
subject to

∑
s∈S(l) xs ≤ cl, ∀l,

x º 0
(1)

where the variables arex.

There are many nice properties of the basic NUM
model due to several simplifying assumptions of the util-
ity functions and flow constraints, which provide the
mathematical tractability of problem (1) but also limit its
applicability. In particular, the utility functions{Us} are
often assumed to be increasing and strictly concave func-
tions. In this paper, we investigate the extension of the
basic NUM to maximization of nonconcave utilities.

Assuming thatUs(xs) becomes concave for large
enoughxs is reasonable, because the law of diminishing
marginal utility eventually will be effective. However,Us

may not be concave throughout its domain. In his semi-
nal paper published a decade ago, Shenker [17] differen-
tiated inelastic network traffic from elastic traffic. Utility
functions for elastic traffic were modeled as strictly con-
cave functions. Whileinelastic flows with nonconcave
utility functions represent important applications in prac-
tice, they have received little attention and have scarcely
any mathematical foundation, except very recent publica-
tions [9], [3], because of their intrinsic intractability in the
utility maximization framework.



B. Review: Canonical distributed algorithm

A reason that the the assumption of utility function’s
concavity is upheld in almost all papers on NUM is that it
leads to three highly desirable mathematical properties of
the basic NUM:

• It is a convex optimization problem, therefore the
global minimum can be computed (at least in central-
ized algorithms) in worst-case polynomial-time com-
plexity [2].

• Strong duality holds for (1) and its Lagrange dual
problem, i.e., the difference between the optimized
value of (1) and that of its dual problem (the optimal
duality gap) is zero [1], [2]. Zero duality gap enables
a dual approach to solve (1).

• Minimization of a separable objective function over
linear constraints can be conducted by distributed al-
gorithms.

Indeed, the basic NUM (1) is such a ‘nice’ optimiza-
tion problem that its theoretical and computational prop-
erties have been well studied since the 1950s in the field
of monotropic programming,e.g., as summarized in [15].
For network rate allocation problems, a dual-based dis-
tributed algorithm has been widely studied (e.g., in [6],
[10]), and is summarized below.

Zero duality gap for (1) states that the solving the La-
grange dual problem is equivalent to solving the primal
problem (1). The Lagrange dual problem is readily de-
rived. We first form the Lagrangian of (1):

L(x, λ) =
∑
s

Us(xs) +
∑

l

λl


cl −

∑

s∈S(l)

xs




whereλl ≥ 0 is the Lagrange multiplier (link price) as-
sociated with the linear flow constraint on linkl. Additiv-
ity of total utility and linearity of flow constraints lead to
a Lagrangian dual decomposition into individual source
terms:

L(x,λ) =
∑
s


Us(xs)−


 ∑

l∈L(s)

λl


 xs


 +

∑

l

clλl

=
∑
s

Ls(xs, λ
s) +

∑

l

clλl

whereλs =
∑

l∈L(s) λl. For each sources, Ls(xs, λ
s) =

Us(xs)−λsxs only depends on localxs and the link prices
λl on those links used by sources.

The Lagrange dual functiong(λ) is defined as the
maximizedL(x, λ) overx. This ‘net utility’ maximiza-
tion obviously can be conducted distributively by the
each source, as long as the aggregate link priceλs =

∑
l∈L(s) λl is available to sources, where sources maxi-

mizes a strictly concave functionLs(xs, λ
s) overxs for a

givenλs:

x∗s(λ
s) = argmax[Us(xs)− λsxs] , ∀s. (2)

The Lagrange dual problem is

minimize g(λ) = L(x∗(λ), λ)
subject to λ º 0

(3)

where the optimization variable isλ. Any algorithms that
find a pair of primal-dual variables(x, λ) that satisfy the
KKT optimality condition would solve (1) and its dual
problem (3). One possibility is a distributed, iterative sub-
gradient method, which updates the dual variablesλ to
solve the dual problem (3):

λl(t+1) =


λl(t)− α(t)


cl −

∑

s:l∈L(s)

xs(λs(t))







+

, ∀l

(4)
where t is the iteration number andα(t) > 0 are step
sizes. Certain choices of step sizes, such asα(t) =
β/t, β > 0, guarantee that the sequence of dual variables
λ(t) will converge to the dual optimalλ∗ ast →∞. The
primal variablex(λ(t)) will also converge to the primal
optimal variablex∗. For a primal problem that is a con-
vex optimization, the convergence is towards the global
optimum.

The sequence of the pair of algorithmic steps (2,4)
forms a canonical distributed algorithmthat globally
solves network utility optimization problem (1) and the
dual (3) and computes the optimal ratesx∗ and link prices
λ∗.

C. Summary of results

It is known that for many multimedia applications, user
satisfaction may assume non-concave shape as a function
of the allocated rate. For example, the utility for streaming
applications is better described by a sigmoidal function:
with a convex part at low rate and a concave part at high
rate, and a single inflexion pointx0 (with U ′′

s (x0) = 0)
separating the two parts. The concavity assumption onUs

is also related to the elasticity assumption on rate demands
by users. When demands forxs are not perfectly elastic,
Us(xs) may not be concave.

Suppose we remove the critical assumption that{Us}
are concave functions, and allow them to be any nonlin-
ear functions. The resulting NUM becomes nonconvex
optimization and significantly harder to be analyzed and
solved, even by centralized computational methods. In
particular, a local optimum may not be a global optimum
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Fig. 1. Some examples of utility functionsUs(xs): it can be con-
cave or sigmoidal as shown in the graph, or any general nonconcave
function. If the bottleneck link capacity used by the source is small
enough,i.e., if the dotted vertical line is pushed to the left, a sigmoidal
utility function effectively becomes a convex utility function.

and the duality gap can be strictly positive. The standard
distributive algorithms that solve the dual problem may
produce infeasible or suboptimal rate allocation. Global
maximization of nonconcave functions is an intrinsically
difficult problem of nonconvex optimization. Indeed, over
the last two decades, it has been widely recognized that
“ in fact the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvex-
ity” (Quote from Rockafellar [16]).

Despite such difficulties, there have been two very re-
cent publications on distributed algorithm for nonconcave
utility maximization. In [9], it is shown that, in general,
the canonical distributive algorithm that solves the dual
problem may produce suboptimal, or even infeasible, rate
allocation, and a ‘self-regulation’ heuristic is proposed to
avoid the resulting oscillation in rate allocation. How-
ever, the heuristic converges only to a suboptimal rate al-
location. In [3], a set of sufficient conditions and nec-
essary conditions is presented under which the canonical
distributed algorithm still converges to the globally opti-
mal solution. However, these conditions may not hold in
many cases. In summary, currently there is no theoreti-
cally polynomial-time and practically efficient algorithm
(distributed or centralized) known for nonconcave utility
maximization.

In this paper, we removes the concavity assumption on
utility functions, thus turning NUM into a nonlinear, non-
convex optimization problem with a strictly positive du-
ality gap. Such problems in general are NP hard, thus
extremely unlikely to be polynomial-time solvable even
by centralized computations. Using a family of convex
semidefinite programming (SDP) relaxations based on the
sum-of-squares (SOS) method and the Positivestellensatz

Theorem in real algebraic geometry, we provide a cen-
tralized computational method to bound the total network
utility in polynomial-time. A surprising result is that for
the examples we have tried, wherever we could verify the
result, the tightest possible bound (i.e., the globally opti-
mal solution) of NUM with nonconcave utilities is com-
puted in polynomial-time with a very low order relaxation.
This efficient numerical method for off-line analysis also
provides the benchmark for distributed heuristics. We also
examine two forms of sigmoidal utilities, and use a change
of variables to transform the original problem into one that
involves only polynomials. The sum-of-squares approach
mentioned above can then be applied.

Our focus has been not only on calculating numerical
bounds for the problem, but also on understanding the in-
ner workings of the relaxations, and the mechanism be-
hind the tightening of the upper bound, in the context of
NUM problems. In this regard, we have examined two
polynomial representations that are particularly suited for
an economics/price interpretation of NUM. One result is
that the classical pricing of congestion on a link is ex-
tended to pricing of the usage of multiple links.

These three different approaches: proposing distributed
but suboptimal heuristics (for sigmoidal utilities) in [9],
determining optimality conditions for the canonical dis-
tributed algorithm to converge globally (for all nonlin-
ear utilities) in [3], and proposing efficient but centralized
method to compute the global optimum (for a wide class
of utilities that can be transformed into polynomial utili-
ties) in this paper, are complementary in the study of dis-
tributed rate allocation by nonconcave NUM, a difficult
class of nonlinear optimization.

II. GLOBAL MAXIMIZATION OF NONCONCAVE

NETWORK UTILITY

A. Sum-of-squares method

First consider a NUM with convex polynomial utili-
ties, such asUs(xs) = x2

s. Sigmoidal utilities will be
considered in subsection III.B. For notational simplicity,
we assume the domain of definition of theUs(xs) implies
xs ≥ 0.

maximize
∑

s Us(xs)
subject to

∑
s∈S(l) xs ≤ cl, ∀l. (5)

We would like to bound the maximum network util-
ity by γ in polynomial time and search for a tight bound.
Had there been no link capacity constraints, maximizing
a polynomial is already an NP hard problem, but can be
relaxed into a SDP [18]. This is because testing if the fol-
lowing bounding inequality holdsγ ≥ p(x), wherep(x)



is a polynomial of degreed in n variables, is equivalent
to testing the positivity ofγ − p(x), which can be re-
laxed into testing ifγ − p(x) can be written as a sum of
squares:p(x) =

∑r
i=1 qi(x)2 for some polynomialsqi,

where the degree ofqi is less than or equal tod/2. If a
polynomial can be written as a sum of squares, it must be
non-negative, but not vice versa. Conditions under which
this relaxation is tight were studied by Hilbert. Quadratic
polynomials are one such case. Determining if a sum of
squares decomposition exists can be formulated as an SDP
feasibility problem, thus polynomial-time solvable.

Constrained nonconcave NUM can be relaxed by a gen-
eralization of the Lagrange duality theory, where the La-
grange multiplier terms arenonlinearcombinations of the
constraints instead of linear combinations in the standard
duality theory. The key result is the Positivstellensatz [19]
in real algebraic geometry, which states that, for a system
of polynomial inequalities, either there exists a solution
in Rn or there exists a polynomial which is a certificate
that no solution exists. This infeasibility certificate is re-
cently shown to be also computable by SDP of sufficient
size [12], [11], a process that is referred to sum-of-squares
method and automated by the software SOSTOOLS [13].

Furthermore, the boundγ itself can become an opti-
mization variable in the SDP and can be directly mini-
mized. A nested family of SDP relaxations, each indexed
by the degree of the infeasibility certificate polynomial
and polynomial-time solvable, is guaranteed to produce
the exact bound. Of course, given the problem is NP hard,
it is not surprising that the worst-case number of SDP
relaxations needed is exponential in the number of vari-
ables.1 What is surprising is that in applying SOSTOOLS
to nonconcave utility maximization, only avery lowor-
der, sometimes theminimumorder relaxation already pro-
duces the globally optimal solution for nonconcave NUM.

B. Application of SOS method to nonconcave NUM

Using sum-of-squares and the Positivstellensatz, the
following relaxation for problem (5) can be derived. It
yields an upper bound on the objective value of the prob-
lem.

minimize γ
subject to
γ −∑

s Us(xs) = σ0(x) +
∑

l σl(x)(cl −
∑

s∈S(l) xs)+∑
j,k σjk(x)(cj −

∑
s∈S(j) xs)(ck −

∑
s∈S(k) xs) + . . . , ∀x

σ0(x), σl(x), σjk(x), . . . are SOS.
(6)

1For more details and many application of SOS methods, see [12]
and references therein.

The optimization variables areγ and all of the coefficients
in polynomialsσ0, σl, σjk. Note thatx is not an opti-
mization variable; the constraints hold for allx, therefore
imposing constraints on the coefficients of the polynomial
terms inx. This formulation uses Schmudgen’s represen-
tation of positive polynomials. Two alternative represen-
tations are discussed in section IV.

Let D be the degree of the expression in the first con-
straint in (6). For a fixed orderD, the problem can be
solved via SDP. AsD is increased, the expression includes
more terms, the corresponding SDP becomes larger, and
the relaxation gives tighter bounds. An important prop-
erty of this nested family of relaxations is the following:
by the Positivstellensatz, forD large enough but finite,
the relaxation becomes exact. In general, suchD can be
exponentially large in the number of variablesn.

To show how this relaxation includes the dual-based so-
lution to the basic NUM with strictly concave utilities as a
special case, let the right hand side of the expression in (6)
be first order. Then the relaxation is simply

minimize γ
subject to
γ −∑

s Us(xs) = σ0 +
∑

l σl(cl −
∑

s∈S(l) xs), ∀x
σ0 ≥ 0, σl ≥ 0, ∀l.

In this case,σ0 andσi are simply non-negative constants.
It is easy to show that the above problem is equivalent to
the following one, which is precisely the dual:

minimize max
x
{
∑
s

Us(xs) +
∑

l

σl(cl −
∑

s∈S(l)

xs) + σ0}

subject to σl ≥ 0, ∀l.
(7)

There is a standardprice interpretationfor this simple
first-order relaxation, which we shall extend to higher-
order relaxation later in this paper. For the case of con-
cave utilities, the dual variablesσ can be interpreted as
link prices, and the boundγ is exact. In the non-concave
utility case, the duality gap is in general not zero, and the
γ is only an upper bound; howeverσ can still be inter-
preted as link prices. If thelth capacity constraint is vio-
lated, we pay an extra charge proportional to the amount
of violation, with priceσl (sincecl −

∑
s∈S(l) xs is nega-

tive and subtracts from the total utility). Similarly, we are
rewarded proportional to the amount of under-used capac-
ity. In sharp contrast to the concave utility case, for non-
concave utilities, these are not equilibrium prices and do
not result in optimal or even feasible rate allocation, un-
less the relaxation is exact. In a sense, this pricing scheme
fails to provide the right incentives for the users to respect
the constraints. In section IV, we discuss this interpreta-
tion for higher order relaxations.



Higher order relaxations can improve the upper bound.
For example, let the right hand side expression in (6) be
second order. We have

minimize γ
subject to
γ −∑

s Us(xs) = σ0(x) +
∑

l σl(cl −
∑

s∈S(l) xs)+∑
j,k σjk(cj −

∑
s∈S(j) xs)(ck −

∑
s∈S(k) xs), ∀x

σl ≥ 0, σjk ≥ 0, ∀l, j, k
σ0 is SOS.

(8)
Note that we now have terms that involve the product of
the constraints. This problem is in fact the Lagrange dual
for problem (5) with some added redundant constraints;
namely, the pairwise product of every two non-negative
terms(cj−

∑
s∈S(j) xs)(ck−

∑
s∈S(k) xs). As mentioned

before, this problem can be solved via SDP, and yields a
bound that is at least as strong as the first-order case. The
expression in (8) can also be written as

γ −∑
s Us(xs)−

∑
l σl(cl −

∑
s∈S(l) xs)−∑

j,k σjk(cj −
∑

s∈S(j) xs)(ck −
∑

s∈S(k) xs) is SOS.
(9)

So we seekγ and polynomialsσi, σjk that make this
polynomial SOS. Clearly a polynomial of odd degree can-
not be SOS, so we need to consider only the cases where
the expression has even degree. Therefore, the degree of
the first non-trivial relaxation is the smallest even number
greater than or equal to degree of

∑
s Us(xs).

A key question is the following: How do we find out,
after solving an SOS relaxation, if the bound happens to
be exact? Fortunately, there is asufficient testthat can re-
veal this, using the properties of the SDP and its dual so-
lution. In [5], [7], a parallel set of relaxations, equivalent
to the SOS ones, is developed in the dual framework. The
dual of checking the nonnegativity of a polynomial over
a semi-algebraic set turns out to be finding a sequence of
momentsthat represent a probability measure with sup-
port in that set. To be a valid set of moments, the sequence
should form a positive semidefinite moment matrix. Then,
each level of relaxation fixes the size of this matrix,i.e.,
considers moments up a certain order, and therefore solves
an SDP. This is equivalent to fixing the order of the poly-
nomials appearing in SOS relaxations. The sufficient rank
test checks a rank condition on this moment matrix, as
discussed in [5].

In summary, we have the followingAlgorithm 1 for
centralized computation of a globally optimal rate alloca-
tion to nonconcave utility maximization, where the util-
ity functions can be written as or converted into polyno-
mials (details about such conversions are in the next sec-
tion):

1) Formulate the relaxed problem (6) for a given de-
greeD.

2) Use SDP to solve theDth order relaxation, which
can be conducted using SOSTOOLS [13].

3) If the resulting dual SDP solution satisfies the suffi-
cient rank condition, theDth order optimizerγ∗(D)
is the globally optimal network utility, and a cor-
respondingx∗ can be obtained. Otherwise,γ∗(D)
may still be the globally optimal network utility but
is only provably an upper bound.

4) IncreaseD to D + 2, i.e., the next higher order re-
laxation, and repeat.

In the following section, we give examples of the ap-
plication of SOS relaxation to the nonconcave NUM. We
also apply the a version of the above sufficient test (as im-
plemented in SOSTOOLS) to check if the bound is exact,
and if so, we recover the optimum rate allocationx∗ that
achieve this tightest bound.

III. N UMERICAL EXAMPLES

A. Polynomial utility examples

First, consider the case of quadratic utilities,i.e.,
Ui(xi) = x2

i as the simplest case. We can also handle
weights on the utilities, cubic or higher order polynomi-
als as utilities, orUi of different orders for different users,
in a similar fashion. We present a few examples that are
typical, in our experience, of the performance of the re-
laxations.

Example 1.This first example is a small and illustrative
one. Consider the simple 2 link, 3 user network shown in
Figure 2, withc = [1, 2].

x1

x3

c1 c2

x2

Fig. 2. Network topology for example 1.

The optimization problem is

maximize
∑

s x2
s

subject to x1 + x2 ≤ 1
x1 + x3 ≤ 2
x1, x2, x3 ≥ 0.

(10)



The first level relaxation withD = 2 is

maximizeγ
subject to
γ − (x2

1 + x2
2 + x2

3)− σ1(−x1 − x2 + 1)− σ2(−x1

−x3 + 2)− σ3x1 − σ4x2 − σ5x3 − σ6(−x1 − x2 + 1)
(−x1 − x3 + 2)− σ7x1(−x1 − x2 + 1)− σ8x2(−x1

−x2 + 1)− σ9x3(−x1 − x2 + 1)− σ10x1(−x1 − x3 + 2)−
σ11x2(−x1 − x3 + 2)− σ12x3(−x1 − x3 + 2)−
σ13x1x2 − σ14x1x3 − σ15x2x3 is SOS,
σi ≥ 0, i = 1, . . . , 15.

(11)
The first constraint above can be written asxT Qx for x =
[1, x1, x2, x3]T and an appropriateQ. For example, the
(1,1) entry which is the constant term readsγ−σ1−2σ2−
2σ6, the (2,1) entry, coefficient ofx1, readsσ1+σ2−σ3+
3σ6−σ7− 2σ10, and so on. The expression is SOS if and
only if Q ≥ 0.

However, since the polynomial is a quadratic in this
specific example, being SOS and being nonnegative are
the same. Thus the problem simplifies to minimizingγ
subject toγ = −x1(σ1 + σ2 − σ3 + 3σ6 − σ7 − 2σ10)−
. . . + (σ1 + 2σ2 + 2σ6), ∀x. Equating the coefficients
results in linear constraints inσ andγ, and the problem
can be solved using a simple linear program with 8 con-
straints and 15 variables (this coincides with the LP relax-
ation discussed in the next section). The optimalγ is 5,
which is achieved by,e.g., σ1 = 1, σ2 = 2, σ3 = 1, σ8 =
1, σ10 = 1, σ12 = 1, σ13 = 1, σ14 = 2 and the rest of
theσi equal to zero.

In this example, many of theσi could be chosen to be
zero. This means not all product terms appearing in 11
are needed in constructing the SOS polynomial. Such in-
formation is valuable from the decentralization point of
view, and can help determine to what extent our bound
can be calculated in a distributed manner. This is a topic
for future work.

Example 2.Consider the 4 link, 4 user network shown
in Figure 3.

x1

x3

c3

x2

c1 c2

c4

x4

Fig. 3. Network topology for example 2.

If we set all link capacities{cl} to 1, using an SOS re-
laxation withD = 2, we obtain the upper boundγ = 2. In

this simple network, either by using the sufficient test de-
scribed above or by inspection, we find that the rate vector
x0 = [1, 0, 0, 1] achieves this bound, hence the bound
is exact. As another example, withc = [2, 3, 4, 1], we
obtainγ = 10. Again, we find thatx0 = [0, 0, 3, 1]
achieves this upper bound, which is therefore exact. The
globally optimal solution to the NUM problem is again
efficiently computed.

Example 3. We now consider a larger example. Con-
sider the network shown in Figure 4 with 7 links. We
allow 9 users, with the following routing table that lists
the links on each user’s path.

x1 x2 x3 x4 x5 x6 x7 x8 x9

1,2 1,2,4 2,3 4,5 2,4 6,5,7 5,6 7 5

Letc = [5, 10, 4, 3, 7, 3, 5], and we obtain the bound
γ = 116 with D = 2, which turns out to be globally op-
timal. The sufficient condition for exactness of the bound
holds here, and allows us to recover the globally optimal
rate vector directly:x0 = [5, 0, 4, 0, 1, 0, 0, 5, 7].
In this example, exhaustive search is too computationally
intensive, and the sufficient condition test plays an impor-
tant role in proving the bound was exact and in recovering
x0.

c1 c2

c3

c4

c5

c6

c7

Fig. 4. Network topology for example 3.

B. Sigmoidal utility examples

Now consider sigmoidal utilities in a standard form:

Us(xs) =
1

1 + e−(asxs+bs)
,

where{as, bs} are constant integers. Even though these
sigmoidal functions are not polynomials, we show the
problem can be cast as one with polynomial cost and con-
straints, with a change of variables.

Example 4.Consider the simple 2 link, 3 user example
shown in Figure 2 foras = 1 andbs = −5.

The NUM problem is to

maximize
∑

s
1

1+e−(xs−5)

subject to x1 + x2 ≤ c1

x1 + x3 ≤ c2

x ≥ 0.

(12)



Let ys = 1
1+e−(xs−5) , thenxs = − log( 1

ys
− 1) + 5.

Substituting forx1, x2 in the first constraint, arranging
terms and taking exponentials, then multiplying the sides
by y1y2 (note thaty1, y2 > 0), we get

(1− y1)(1− y2) ≥ e(10−c1)y1y2,

which is polynomial in the new variablesy. This applies
to all capacity constraints, and the non-negativity con-
straints forxs translate toys ≥ 1

1+e5 . Therefore the whole
problem can be written in polynomial form, and SOS
methods apply. This transformation renders the problem
polynomial for general sigmoidal utility functions, with
anyas andbs.

We present some numerical results. These example is
small enough to be solved by hand, and we could verify
that the bounds obtained in the following examples are
exact. Here SOS relaxations of order 4 (D = 4) were
used. Forc1 = 4, c2 = 8, we find γ = 1.228, which
turns out to be a global optimum, withx0 = [0, 4, 8]
as the optimal rate vector. Forc1 = 9, c2 = 10, we find
γ = 1.982 andx0 = [0, 9, 10]. Now place a weight of
2 on y1, while the otherys have weight one, we obtain
γ = 1.982 andx0 = [9, 0, 1].

In general, ifas 6= 1 for somes, however, the degree of
the polynomials in the transformed problem may be very
high. If we write the general problem as

maximize
∑

s
1

1+e−(asxs+bs)

subject to
∑

s∈S(l) xs ≤ cl, ∀l,
x ≥ 0,

(13)

each capacity constraint after transformation will be

∏
s(1− ys)rlsΠk 6=sak ≥

exp(−∏
s as(cl +

∑
s rls/asbs))

∏
s y

rls

∏
k 6=s

ak

s ,

whererls = 1 if l ∈ L(s) and equals 0 otherwise. Since
the product of theas appears in the exponents,as > 1
significantly increases the degree of the polynomials ap-
pearing in the problem and hence the dimension of the
SDP in the SOS method.

Another utility function that can be used to represent
sigmoidal functions is the following rational function:

Us(xs) =
xn

s

a + xn
s

,

where the inflection point isx0 = (a(n−1)
n+1 )1/n and the

slope at the inflection point isUs(x0) = n−1
4n ( n+1

a(n−1))
1/n.

Let ys = Us(xs), the NUM problem in this case is equiv-

alent to

maximize
∑

s ys

subject to xn
s − ysx

n
s − ays = 0∑

s∈S(l) xs ≤ cl, ∀l
x ≥ 0

(14)

which again can be accommodated in the SOS method and
be solved by Algorithm 1.

The benefit of this choice of utility function is that the
largest degree of the polynomials in the problem isn + 1,
so it grows linearly withn. The disadvantage compared
to the exponential form for sigmoidal functions is that the
location of the inflection point and the slope at this point
cannot be set independently.

IV. A LTERNATIVE REPRESENTATIONS FOR CONVEX

RELAXATIONS TO NONCONCAVE NUM

The SOS relaxation we used in the last two sections is
based on Schmudgen’s representation for positive polyno-
mials over compact sets described by other polynomials.
In this section, we briefly discuss two other representa-
tions of relevance to the NUM, that are interesting from
both theoretical (e.g., interpretation) and computational
(e.g., efficiency) points of view.

A. LP relaxation

Exploiting linearity of the constraints in NUM and with
the additional assumption of nonempty interior for the
feasible set, we can use Handelman’s representation [4]
and refine the Positivstellensatz condition to obtain the
following convex relaxation of nonconcave NUM prob-
lem:

maximizeγ
subject to

γ −∑
s Us(xs) =

∑

α∈NL

σα

L∏

l=1

(cl −
∑

s∈S(l) xs)αl , ∀x

σα ≥ 0, ∀α,
(15)

where the optimization variables areγ andσα, andα de-
notes an ordered set of integers{αl}.

Fixing D where
∑

l αl ≤ D, and equating the coeffi-
cients on the two sides of the equality in (15), yields a
linear program (LP). (Note that there are no SOS terms,
therefore no semidefiniteness conditions.) As before, in-
creasing the degreeD gives higher order relaxations and
a tighter bound.

We provide a (partial) price interpretation for prob-
lem (15). First, normalize each capacity constraint as
1 − ul(x) ≥ 0, whereul(x) =

∑
s∈S(l) xs/cl. We can



interpretul(x) aslink usage, or the probability that linkl
is used at any given point in time. Then, in (15), we have
terms linear inu such asσl(1 − ul(x)), in which σl has
a similar interpretation as in concave NUM, as the price
of using link l (at full capacity, due to the normalization).
We also have product terms such asσjk(1 − uj(x))(1 −
uk(x)), that indicate the probability ofsimultaneousus-
age of linksj andk, for links whose usage probabilities
are independent (e.g., they do not share any flows). Prod-
ucts of more terms can be interpreted similarly.

While the above price interpretation is not complete and
does not justify all the terms appearing in (15) (e.g., pow-
ers of the constraints; product terms for links with shared
flows), it does provide some useful intuition: this relax-
ation results in a pricing scheme that provides better in-
centives for the users to observe the constraints, by putting
additional reward (since the corresponding term adds pos-
itively to the utility) for simultaneously keeping two links
free. Such incentive helps tighten the upper bound and
eventually achieve a feasible (and optimal) allocation.

This relaxation is computationally attractive since we
need to solve an LPs instead of the previous SDPs at each
level. However, significantly more levels may be required.
2

B. Relaxation with no product terms

Putinar [14] showed that a polynomial positive over a
compact set (with an extra assumption that always holds
for linear constraints as in NUM problems) can be repre-
sented as an SOS-combination of the constraints. This
yields the following convex relaxation for nonconcave
NUM problem:

maximize γ
subject to
γ −∑

s Us(xs) =
∑L

l=1 σl(x)(cl −
∑

s∈S(l) xs), ∀x
σ(x) is SOS,

(16)
where the optimization variables are the coefficients in
σl(x). Similar to the SOS relaxation, fixing the orderD
of the expression in (16) results in an SDP. This relax-
ation has the nice property that no product terms appear,
that is, the relaxation becomes exact with a high enough
D without the need of product terms. However, this de-
gree might be much higher than what the previous SOS
method requires.

We note yet another price interpretation: this time the
link price is given by an SOS polynomial multiplier that

2From a numerical point of view, the recent paper [8] reports conver-
gence problems with this type of relaxation, but the problematic cases
do not include our problem.

depends on the rates. The physical meaning of such
prices, and the computational aspects of this relaxation
remain to be explored.

V. CONCLUSIONS AND FURTHER EXTENSIONS

We consider the NUM problem in the presence of in-
elastic flows,i.e., flows with nonconcave utilities. Despite
its practical importance, this problem has not been stud-
ied widely, mainly due to the fact it is a nonconvex, NP-
hard problem. There has been no effective mechanism,
centralized or distributed, to compute the globally optimal
rate allocation for nonconcave utility maximization prob-
lems in networks. This limitation has made performance
assessment and design of networks that include inelastic
flows very difficult.

To address this problem, we employed convex SOS
relaxations, solved by a sequence of SDPs, to obtain
high quality, increasingly tighter upper bounds on total
achievable utility. In practice, the performance of our
SOSTOOLS-based algorithm was surprisingly good, and
bounds obtained using a polynomial-time (and indeed a
low-order and often minimal order) relaxation were found
to be exact, achieving the global optimum of nonconcave
NUM problems. Furthermore, a dual-based sufficient test,
if successful, detects the exactness of the bound, in which
case the optimal rate allocation can also be recovered.
This surprisingly good performance of the proposed algo-
rithm brings up the question whether there is any particu-
lar property or structure in nonconcave NUM that makes
it especially suitable for SOS relaxations.

We further examined the use of two more specialized
polynomial representations, one that uses products of con-
straints with constant multipliers, resulting in LP relax-
ations; and at the other end of spectrum, one that uses a
‘linear’ combination of constraints with SOS multipliers.
We expect these relaxations to give higher order certifi-
cates, thus their potential computational benefits need to
be examined further. We also show they admit useful eco-
nomics interpretations (e.g., prices, incentives) that pro-
vide valuable insight on how the SOS relaxations work in
the framework of link congestion pricing for the simulta-
neous usage of multiple links.

Another research issue of interest in nonconcave NUM
problems is decentralization methods. Algorithm 1 is not
easy to decentralize, given the products of the constraints
or polynomial multipliers that destroy the separable struc-
ture of the problem. However, when relaxations become
exact, the sparsity pattern of the coefficients can provide
information about partially decentralized computation of
optimal rates. For example, if after solving the NUM off-
line, we obtain an exact bound, then if the coefficient of



the cross-termxixj turns out to be zero, it means usersi
andj do not need to communicate to each other to find
their optimal rates. An interesting next step in this area of
research is to investigate distributed version of Algorithm
1 through message passing among clusters of network
nodes and links. It is also worth continuing to explore
other types of nonconcave functions that can be trans-
formed into polynomials and handled by SOS methods,
in addition to the two sigmoidal forms we already exam-
ined in this paper.
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