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Abstract—Network Utility Maximization problem hasre-  behavior models and network efficiency-fairness charac-
cently been used extensively to analyze and design disterization. By allowing nonlinear concave utility objec-
tributed rate allocation in networks such as the Intemet. tjye functions, NUM substantially expands the scope of

A major limitation in the state-of-the-art is that user utility the classical LP-based Network Flow Problems
functions are assumed to be strictly concave functions, mod- '

eling elastic flows. Many applications require inelastic flow ~ Consider a communication network withlinks, each
models where nonconcave utility functions need to be maxi- With a fixed capacity ot; bps, andS sourcesi(e., end
mized. It has been an open problem to find the globally op- users), each transmitting at a source rate agbps. Each
timal rate allocation that solves nonconcave network utility - sources emits one flow, using a fixed séf(s) of links in
maximization, which is a difficult nonconvex optimization jig path, and has a utility functiofi,(z;). Each linki is
problem. shared by a se$(l) of sources. Network Utility Max-
We provide a centralized algorithm for off-line analysis imization (NUM), in its basic version, is the following
and establishment of performance benchmark for noncon- problem of maximizing the total utility of the network

cave utility ma>_<|m|zat|or_1. Bas_ed on the semi-algebraic ap- . U,(x), over the source rates subject to linear flow
proach to nonlinear optimization, we employ convex sum- CONSHraintS” ;o) s < ¢ for all links I:

. . . . . : s = .
of-squares relaxations for polynomial optimization, solved sileL(s)

by a sequence of semidefinite programs, to obtain increas- o

ingly tighter upper bounds on total achievable utility. Sur- maximize > Us(zs)

prisingly, in all our experiments, a very low order and subjectto > .cqpyzs <, Vi, 1)
often a minimal order relaxation yields not just a bound x>0

on attainable network utility, but also the globally maxi-

mized network utility. Using a sufficiency test, whenever where the variables ase

the bound can be proven to be exact, a globally optimal ~ There are many nice properties of the basic NUM
rate allocation is recovered. In addition to polynomial utili-  model due to several simplifying assumptions of the util-
ties, sigmoidal utilities can be transformed into polynomials jty functions and flow constraints, which provide the
and are handled by our algorithm. Furthermore, using two  mathematical tractability of problem (1) but also limit its
alternative representation theorems for positive polynomi- applicability. In particular, the utility function$U,} are

als, we present price interpretations in economics terms for often assumed to be increasing and strictly concave func-
these relaxations, extending the classical interpretation of tions. In this paper, we investigate the extension of the
independent congestion pricing on each link to pricing for pasic NUM to maximization of nonconcave utilities.

the simultaneous usage of multiple links. . Assuming thatU,(z;) becomes concave for large
~ Keywords:  Nonconvex optimization, network util- 6,51, is reasonable, because the law of diminishing
ity, rate allocation, algebraic geometry, sum of sqUargs,qinal utility eventually will be effective. Howevel,
method may not be concave throughout its domain. In his semi-
nal paper published a decade ago, Shenker [17] differen-
|. INTRODUCTION tiated inelastic network traffic from elastic traffic. Utility
functions for elastic traffic were modeled as strictly con-
cave functions. Whilenelastic flows with nonconcave
Since the publication of the seminal paper [6] by Kellyytility functions represent important applications in prac-
Maulloo, and Tan in 1998, the framework of Networkice, they have received little attention and have scarcely
Utility Maximization (NUM) has found many applica-any mathematical foundation, except very recent publica-
tions in network rate allocation algorithms and Interngions [9], [3], because of their intrinsic intractability in the
congestion control protocol®.g, [10]), as well as user utility maximization framework.

A. Background: Basic network utility maximization



B. Review: Canonical distributed algorithm > 1eL(s) A is available to source, where source maxi-

A reason that the the assumption of utility function'§"'#€S istrlctly concave functiofl(z,, A*) overa, for a
concavity is upheld in almost all papers on NUM is that glven)\ :
leads to three highly desirable mathematical properties of 2F(\%) = argmaX{U, (zs) — Aas], Vs. )
the basic NUM:

« It is a convex optimization problem, therefore the The Lagrange dual problem is
global minimum can be computed (at least in central-
ized algorithms) in worst-case polynomial-time com-
plexity [2].

« Strong duality holds for (1) and its Lagrange dualhere the optimization variable % Any algorithms that
problem,i.e., the difference between the optimizedind a pair of primal-dual variables, A) that satisfy the
value of (1) and that of its dual problem (the optimakk T optimality condition would solve (1) and its dual
duality gap) is zero [1], [2]. Zero duality gap enableproblem (3). One possibility is a distributed, iterative sub-

a dual approach to solve (1). gradient method, which updates the dual variable®
« Minimization of a separable objective function ovegplve the dual problem (3):

linear constraints can be conducted by distributed al-

gorithms. +
Indeed, the basic NUM (1) is such a ‘nice’ optimizaf\l(Hl) =N —alt) |la- Y z(\(1) , vl
tion problem that its theoretical and computational prop- sileL(s) 4)

erties have been well studied since the 1950s in the ﬁ?/\'/(fineret is the iteration number and(f) > 0 are step
of monotropic programmingg.g, as summarized in [15]'sizes. Certain choices of step sizes, such@y —

For network rate allocation problems, a dual-based dis- :
' t arantee that the sequence of dual able
tributed algorithm has been widely studieeld, in [6], Bt, 6 > 0, guar sequence ot duatvariables

[10)), and is summarized below A(t) will converge to the dual optimal* ast — oo. The

, _ primal variablex(A(t)) will also converge to the primal
Zero duality gap for (1) states that the solving the Lao-

dual blemn | val ving the pri Etimal variablex*. For a primal problem that is a con-
grange dual problem is equivalent to so ving the PrMZox optimization, the convergence is towards the global
problem (1). The Lagrange dual problem is readily d%’ptimum

rived. We first form the Lagrangian of (1): '

minimize g(\) = L(x*(A), A)
subjectto A =0

®3)

The sequence of the pair of algorithmic steps (2,4)
forms a canonical distributed algorithnthat globally

L(x,\) = ZUS(JUS) + Z)‘l ¢ — Z T, solves network utility optimize_ltion problem _(1) apd the
s ] seS() dual (3) and computes the optimal ratesand link prices

where\; > 0 is the Lagrange multiplier (link price) as-
sociated with the linear flow constraint on lihkAdditiv-  C. Summary of results
ity of total utility and linearity of flow constraints lead to It is known that for many multimedia applications, user

a Lagrangian dual decomposition into individual SOUr&,tisfaction may assume non-concave shape as a function

terms: of the allocated rate. For example, the utility for streaming
applications is better described by a sigmoidal function:
Us(zs) — ( Z Az) xs| + ch)\l with a convex part at low rate and a concave part at high
l€L(s) I rate, and a single inflexion poinf (with U”(z°) = 0)
_ Z Lo(5, %) + Z Y _separating the two parts. _T_he concavit_y assumptiotion
. ; is also related to the elasticity assumption on rate demands
by users. When demands fer are not perfectly elastic,

L(x,A) = Z

s

whereA® = 37,1 () \i. For each source, Ls(zs, A*) = U,(z5) may not be concave.
Us(xzs)—Nzs only depends on locals and the link prices  Suppose we remove the critical assumption #iat}
A; on those links used by sourge are concave functions, and allow them to be any nonlin-

The Lagrange dual functiog(\) is defined as the ear functions. The resulting NUM becomes nonconvex
maximizedL(x, A) overx. This ‘net utility’ maximiza- optimization and significantly harder to be analyzed and
tion obviously can be conducted distributively by theolved, even by centralized computational methods. In
each source, as long as the aggregate link pkite= particular, a local optimum may not be a global optimum



Theorem in real algebraic geometry, we provide a cen-
tralized computational method to bound the total network
utility in polynomial-time. A surprising result is that for

. the examples we have tried, wherever we could verify the

g — result, the tightest possible bourice( the globally opti-
st Y / ] mal solution) of NUM with nonconcave utilities is com-

25F

puted in polynomial-time with a very low order relaxation.

This efficient numerical method for off-line analysis also
provides the benchmark for distributed heuristics. We also
/ | examine two forms of sigmoidal utilities, and use a change
LT ‘ ‘ of variables to transform the original problem into one that
x involves only polynomials. The sum-of-squares approach

Fig. 1. Some examples of utility functioris, (z): it can be con- mentioned above can then be applied.

cave or sigmoidal as shown in the graph, or any general nonconcavOur focus has been not only on calculating numerical
function. If the bottleneck link capacity used by the source is smaflounds for the problem, but also on understanding the in-
Ezl‘i’t“%hj-e-z if th‘f?fdc’t,te? Vs”ica' line is pushed Flc,’ thfe left, a sigmoidgher \workings of the relaxations, and the mechanism be-
y function effectively becomes a convex utility function. hind the tightening of the upper bound, in the context of
NUM problems. In this regard, we have examined two
p&lynomial representations that are particularly suited for

and the duality gap can be strictly positive. The standad k o= ) )
distributive algorithms that solve the dual problem mag;‘ economics/price interpretation of NUM. One result is

produce infeasible or suboptimal rate allocation. Glob at the clags_lcal pricing of congesﬂ_on on a link is ex-
maximization of nonconcave functions is an intrins.ically':‘nd(':‘d to p”°'”9 of the usage of multiple I|nI.<s. L
difficult problem of nonconvex optimization. Indeed, over These th_ree dlffere_nt_ approac_hes: proposing dls_trlbuted
the last two decades, it has been widely recognized tlt?éﬁt supoptlmal heurllstlcs (f‘?r_ sigmoidal Ut'“t'es? In [9_]’
“in fact the great watershed in optimization isn't betwee#€termining optimality conditions for the canonical dis-

linearity and nonlinearity, but convexity and nonconvexfiPuted algorithm to converge globally (for all nonlin-
ity” (Quote from Rockafellar [16]). ear utilities) in [3], and proposing efficient but centralized

Despite such difficulties, there have been two very rg1€thod to compute the global optimum (for a wide class
utilities that can be transformed into polynomial utili-

cent publications on distributed algorithm for nonconcave ~~ "=~ s ]
ties) in this paper, are complementary in the study of dis-

utility maximization. In [9], it is shown that, in general, ibuted " ion b NUM. a difficul
the canonical distributive algorithm that solves the du f ute rate'a ocatlo.n 'y nonconcave » a difficult
Igss of nonlinear optimization.

problem may produce suboptimal, or even infeasible, rat
allocation, and a ‘self-regulation’ heuristic is proposed to

avoid the resulting oscillation in rate allocation. How- |I. GLOBAL MAXIMIZATION OF NONCONCAVE
ever, the heuristic converges only to a suboptimal rate al- NETWORK UTILITY

location. In [3], a set of sufficient conditions and neca, sum-of-squares method

essary conditions is presented under which the canonical.. . . . .
o . . . First consider a NUM with convex polynomial utili-
distributed algorithm still converges to the globally opti-. 9 o . L .
. " ties, such ad/s(zs) = zZ. Sigmoidal utilities will be
mal solution. However, these conditions may not hold in_ " . . . . S
. onsidered in subsection Ill.B. For notational simplicity,
many cases. In summary, currently there is no theoreti- : - S
o . . . _Wwe assume the domain of definition of thig(x) implies
cally polynomial-time and practically efficient algorithm

L : 2T > 0.
(distributed or centralized) known for nonconcave utllltflc s =0
maximization. maximize ", Uy(z)
In this paper, we removes the concavity assumption on subjectto > .50y zs < c, Vi (%)

utility functions, thus turning NUM into a nonlinear, non-

convex optimization problem with a strictly positive du- We would like to bound the maximum network util-
ality gap. Such problems in general are NP hard, thitg by ~ in polynomial time and search for a tight bound.
extremely unlikely to be polynomial-time solvable eveiad there been no link capacity constraints, maximizing
by centralized computations. Using a family of convea polynomial is already an NP hard problem, but can be
semidefinite programming (SDP) relaxations based on ttedaxed into a SDP [18]. This is because testing if the fol-
sum-of-squares (SOS) method and the Positivestellendatzing bounding inequality holds > p(x), wherep(x)



is a polynomial of degred in n variables, is equivalent The optimization variables argand all of the coefficients
to testing the positivity ofy — p(x), which can be re- in polynomialsoy, o;, o;;. Note thatx is not an opti-
laxed into testing ify — p(x) can be written as a sum ofmization variable; the constraints hold for alltherefore
squares:p(x) = >.7_; ¢;(x)? for some polynomialg;, imposing constraints on the coefficients of the polynomial
where the degree af; is less than or equal té/2. If a terms inz. This formulation uses Schmudgen'’s represen-
polynomial can be written as a sum of squares, it must taion of positive polynomials. Two alternative represen-
non-negative, but not vice versa. Conditions under whithtions are discussed in section IV.
this relaxation is tight were studied by Hilbert. Quadratic Let D be the degree of the expression in the first con-
polynomials are one such case. Determining if a sum sifaint in (6). For a fixed ordeb, the problem can be
sqguares decomposition exists can be formulated as an SioRed via SDP. AD is increased, the expression includes
feasibility problem, thus polynomial-time solvable. more terms, the corresponding SDP becomes larger, and

Constrained nonconcave NUM can be relaxed by a géhe relaxation gives tighter bounds. An important prop-
eralization of the Lagrange duality theory, where the L&ty of this nested family of relaxations is the following:
grange multiplier terms amonlinearcombinations of the by the Positivstellensatz, fab large enough but finite,
constraints instead of linear combinations in the standdhg relaxation becomes exact. In general, siicban be
duality theory. The key result is the Positivstellensatz [18kponentially large in the number of variables
in real algebraic geometry, which states that, for a systeml0 show how this relaxation includes the dual-based so-
of polynomial inequalities, either there exists a solutioiition to the basic NUM with strictly concave utilities as a
in R™ or there exists a polynomial which is a certificatépecial case, let the right hand side of the expression in (6)
that no solution exists. This infeasibility certificate is rebe first order. Then the relaxation is simply
cently shown to be also computable by SDP of sufficient . . .

. . minimize
size [12], [11], a process that is referred to sum—of—square%ubj ect to
method and automated by the software SOSTOOLS [13]. .
. .Y Zs Us(zs) =o0o+ Zl Ul(cl - ZSES(Z) 1’3), vx

Furthermore, the bound itself can become an opti-

L . . . .. 00=>0, 0,20, Vi
mization variable in the SDP and can be directly mini-
mized. A nested family of SDP relaxations, each indexéd this caseg, ando; are simply non-negative constants.
by the degree of the infeasibility certificate polynomidk is easy to show that the above problem is equivalent to
and polynomial-time solvable, is guaranteed to produtige following one, which is precisely the dual:
the exact bound. Of course, given the problemis NP hard, . . .
it is not surprising that the worst-case number of SDP"'NMIZE m,?x{; Us(as) + ;‘”(Cl — Y ) +oo}

relaxations needed is exponential in the number of vari- . seS(0)
1 . L : . subjectto o; > 0, Vi.
ables.” What is surprising is that in applying SOSTOOLS @)

to nonconcave utility maximization, only\ry lowor-  rpere is 5 standarprice interpretationfor this simple
der, sometimes theinimumorder relaxation already pro-firt order relaxation, which we shall extend to higher-

duces the globally optimal solution for nonconcave NUM ey relaxation later in this paper. For the case of con-

cave utilities, the dual variables can be interpreted as
link prices, and the bound is exact. In the non-concave
utility case, the duality gap is in general not zero, and the
USing Sum-Of-SquareS and the POSitiVSte”ensatZ, WQS On|y an upper bound; however can still be inter-
following relaxation for problem (5) can be derived. Ipreted as link prices. If theh capacity constraint is vio-
yields an upper bound on the objective value of the profyted, we pay an extra charge proportional to the amount
lem. of violation, with priceo; (sincec; — 3= c 5 25 is nega-
tive and subtracts from the total utility). Similarly, we are
subject to _rewarded proportional to the amount of_u_nder—used capac-
LN Us(zs) = 00(x) + 5y ou(x) (e — 3 )+ ity. In sharplgontrast to the concaw.a.utl.llty case, for non-
i s TSNS 0 1ot ! sE€S(1) s concave utilities, these are not equilibrium prices and do
2w 0k (})(€5 = Pses(y) @s) (e = Lsesr Ts) + -+ Yot result in optimal or even feasible rate allocation, un-
00(x), 01(x), 0 (x), ... are SOS less the relaxation is exact. In a sense, this pricing scheme
() fails to provide the right incentives for the users to respect

1For more details and many application of SOS methods, see [1B€ constraints. In section IV, we discuss this interpreta-
and references therein. tion for higher order relaxations.

B. Application of SOS method to nonconcave NUM

minimize -~



Higher order relaxations can improve the upper bound.1) Formulate the relaxed problem (6) for a given de-
For example, let the right hand side expression in (6) be greeD.
second order. We have 2) Use SDP to solve th&th order relaxation, which
can be conducted using SOSTOOLS [13].

mln!m|ze v 3) If the resulting dual SDP solution satisfies the suffi-
subject to cient rank condition, thé&th order optimizer* (D)

v = 2 Us(@s) = o0(x) + 35 01(cr — YXgesqy ©s)+ is the globally optimal network utility, and a cor-
2k 0k = Xses ) Ts)(Ch — Lses(r) Ts)s VX respondingk* can be obtained. Otherwisg?(D)
0120, ojk 20, V1, 5,k may still be the globally optimal network utility but
og is SOS

is only provably an upper bound.

) (8) 4) IncreaseD to D + 2, i.e,, the next higher order re-
Note that we now have terms that involve the product of laxation, and repeat

the constraints. This problem is in fact the Lagrange dual

for problem (5) with some added redundant constraints;In t_he ft?”gv(;lgg sl,ectu?n, we ﬁ've examples ONfSS ?’5'
namely, the pairwise product of every two non-negati Ication o relaxation to the nonconcave - Ve

terms(c; — S st 24)(ch— S sest z,). As mentioned also apply the a version of the above sufficient test (as im-

before, this problem can be solved via SDP, and yieldé)!fmemed in SOSTOOLS) to check if the bound is exact,

bound that is at least as strong as the first-order case. ?Hg i so,h\'/ve.rehcovert')the (cj)pnmum rate allocationthat
expression in (8) can also be written as achieve this tightest bound.

v =2 Us(ws) = 2y ou(er — 2 ses() Ts)—

25k Ok — Xses() Ts)(Ch — Lsesr) Ts) 1S 50?9) I1l. NUMERICAL EXAMPLES
So we seeky and polynomialso;, o that make this A polynomial utility examples
polynomial SOS. Clearly a polynomial of odd degree can-
not be SOS, so we need to consider only the cases wherEirst, consider the case of quadratic utilitieise.,
the expression has even degree. Therefore, the degre&,0f;) = z7 as the simplest case. We can also handle
the first non-trivial relaxation is the smallest even numbareights on the utilities, cubic or higher order polynomi-
greater than or equal to degreeXf Us(zs). als as utilities, of/; of different orders for different users,

A key question is the following: How do we find out,in a similar fashion. We present a few examples that are
after solving an SOS relaxation, if the bound happens tigpical, in our experience, of the performance of the re-
be exact? Fortunately, there isafficient testhat can re- laxations.
veal this, using the properties of the SDP and its dual so-Example 1. This first example is a small and illustrative
lution. In [5], [7], a parallel set of relaxations, equivalenpne. Consider the simple 2 link, 3 user network shown in
to the SOS ones, is developed in the dual framework. Thyure 2, withc = 1, 2].
dual of checking the nonnegativity of a polynomial over
a semi-algebraic set turns out to be finding a sequence of x2 x3
momentghat represent a probability measure with sup-
portin that set. To be a valid set of moments, the sequence c @
should form a positive semidefinite moment matrix. Then, ° P PY
each level of relaxation fixes the size of this matiig,,
considers moments up a certain order, and therefore solves ~ --------------- - >
an SDP. This is equivalent to fixing the order of the poly- x1
nomials appearing in SOS relaxations. The sufficient ra%_ 2. Network topology for example 1.
test checks a rank condition on this moment matrix, as
discussed in [5].

In summary, we have the followinglgorithm 1 for The optimization problem is
centralized computation of a globally optimal rate alloca-

tion to nonconcave utility maximization, where the util- maximize 3, 2
ity functions can be written as or converted into polyno- subjectto x; +x2 <1 (10)
mials (details about such conversions are in the next sec- x1+ a3 <2

tion): 1, 22,23 > 0.



The first level relaxation witlD = 2 is this simple network, either by using the sufficient test de-

maximize~y scribed above or by inspection, we find that the rate vector
subject to xp = [1, 0, 0, 1] achieves this bound, hence the bound
v — (23 4+ 23 +23) — o1(—x1 — 22 + 1) — 02(—11 is exact. As another example, with= [2, 3, 4, 1], we

—13+ 2) — 0371 — 0479 — 0573 — 0g(—x1 — 22 + 1) Obtainy = 10. Again, we find thatx, = [0, 0, 3, 1]
(—x1 — 23 +2) —orz1(—21 — 2 + 1) — ogwa(—21 achieves this upper bound, which is therefore exact. The
—x9 + 1) — ogx3(—x1 — 2 + 1) — 01071 (—11 — 23 + 2)globally optimal solution to the NUM problem is again

o11xa(—r1 — x3 4+ 2) — op9w3(—x1 — w3 +2)— efficiently computed.
013T1T2 — 0142123 — O15T223 IS SOS Example 3. We now consider a larger example. Con-
0;>0,i=1,...,15. sider the network shown in Figure 4 with 7 links. We

(11) allow 9 users, with the following routing table that lists

The first constraint above can be writteruds)x for = the links on each user’s path.
1, =1, x2, xg]_T a_nd an appropriat@. For example, the 1 | 23 |23 | 2s | 25 | 26 | 27 | 23 | o
(1,1) entry which is the C(_)n_stant termreadso; — 209 — 12 124| 23452465756 7 | 5
206, the (2,1) entry, coefficient af;, readsry + 02— o3+
306 — o7 — 2010, and so on. The expression is SOS if and Letc = [5, 10, 4, 3, 7, 3, 5], and we obtain the bound
only if Q > 0. v = 116 with D = 2, which turns out to be globally op-

However, since the polynomial is a quadratic in thignal. The sufficient condition for exactness of the bound
specific example, being SOS and being nonnegative Afds here, and allows us to recover the globally optimal
the same. Thus the problem simplifies to minimizing rate vector directly:x, = [5, 0, 4, 0, 1, 0, 0, 5, 7].
subject toy = —z1 (o1 + 02 — 03 + 306 — o7 — 200) — N this example, exhaustive search is too computationally

.+ (01 + 209 + 20¢), Vx. Equating the coefficientsintensive, and the sufficient condition test plays an impor-
results in linear constraints ir and~, and the problem tantrole in proving the bound was exact and in recovering
can be solved using a simple linear program with 8 cofie-
straints and 15 variables (this coincides with the LP relax-

ation discussed in the next section). The optimas 5, c3 @
whichis achieved by.g,01 =1, 00 =2, 03 =1, 03 = ° o ]
1, c10=1, 012=1, 0135 =1, 014 = 2 and the rest of c1 2 )

theo; equal to zero.

In this example, many of the; could be chosen to be
zero. This means not all product terms appearing in 11
are negdeq in constructing the SOS polypomlal. Sgch H]é. 4. Network topology for example 3,
formation is valuable from the decentralization point of
view, and can help determine to what extent our bound
can be calculated in a distributed manner. This is a topic _ N
for future work. B. Sigmoidal utility examples

Example 2. Consider the 4 link, 4 user network shown Now consider sigmoidal utilities in a standard form:
in Figure 3. 1

3 Us(xs) = mv
p where{as, bs} are constant integers. Even though these
B sigmoidal functions are not polynomials, we show the
: problem can be cast as one with polynomial cost and con-
straints, with a change of variables.

Example 4.Consider the simple 2 link, 3 user example
shown in Figure 2 fon; = 1 andbs = —5.

The NUM problem is to

x2

Fig. 3. Network topology for example 2. maximize ), ﬁ
e (s~

subjectto z; + 29 < ¢
If we set all link capacitiegc; } to 1, using an SOS re- 1+ 23 < e
laxation withD = 2, we obtain the upper bound= 2. In x > 0.

(12)



Letys = 1r=t=w» thenzs = —log(;- — 1) + 5. alentto
Substituting forzy, xo in the first constraint, arranging
terms and taking exponentials, then multiplying the sides

by y1y2 (note thaty;, y» > 0), we get

maximize 3 . ys

subjectto 7 — ysal? —ays =0
Yses(y Ts S i, Vi

(1= y1)(1 = yo) > 10Dy, x20

(14)

which is polvnomial in the new variablas This apolies which again can be accommodated in the SOS method and
Poy 98 bp be solved by Algorithm 1.

to all capacity constraints, and the non-negativity cori- The benefit of this choice of utility function is that the

straints forz, translate ta;, > —L-. Therefore the whole L .
s Vs gjlrgest degree of the polynomials in the problem is 1,

. ._ 1+e5. .
problem can be written in polynomial form, and SO So it grows linearly withn. The disadvantage compared

meth ly. This transformation renders the problem . . . . .
© ods. apply S tra storn atio e de Sj[ €p op eto the exponential form for sigmoidal functions is that the
polynomial for general sigmoidal utility functions, with

location of the inflection point and the slope at this point
anyas andbg.

, cannot be set independently.
We present some numerical results. These example Is P y

small enough to be solved by hand, and we could verify

that the bounds obtained in the following examples aréV: ALTERNATIVE REPRESENTATIONS FOR CONVEX

exact. Here SOS relaxations of order 2 (= 4) were RELAXATIONS TO NONCONCAVENUM

used. Fore; = 4,¢co = 8, we findy = 1.228, which The SOS relaxation we used in the last two sections is

turns out to be a global optimum, withy = [0, 4, 8] based on Schmudgen’s representation for positive polyno-

as the optimal rate vector. Fer = 9,¢; = 10, we find mials over compact sets described by other polynomials.

~v = 1.982 andxy = [0, 9, 10]. Now place a weight of In this section, we briefly discuss two other representa-

2 onyp, while the otherys have weight one, we obtaintions of relevance to the NUM, that are interesting from

~v = 1.982 andxy = [9, 0, 1]. both theoretical €.g, interpretation) and computational
In general, ifa, # 1 for somes, however, the degree of(e.qg, efficiency) points of view.

the polynomials in the transformed problem may be very

high. If we write the general problem as A. LP relaxation
maximize 3 I Explo?t?ng linearity of 'Fhe constraints in NUM_and with
biect t s 1+e_(a5$2+ s) v (13) the additional assumption of nonempty interior for the
subjectto ZSES(Z) Ts =G, Vo feasible set, we can use Handelman'’s representation [4]

x 20, and refine the Positivstellensatz condition to obtain the

each capacity constraint after transformation will be following convex relaxation of nonconcave NUM prob-

lem:
[Ts(1 — ys)rreTlezeor > maximize~y
Tis s Q bject t
exp(— Hs as(cl + Zs rls/asbs)) Hs ysl Hk# k7 subjectto L
- Us s) = « — Zus s al’ V.

wherer;; = 1if [ € L(s) and equals 0 otherwise. Since 7= 2 Uslas) QEEZ;LU l:Hl(cl 2uses) @ ) *
the product of the:; appears in the exponenig, > 1 4 >0, Va,
significantly increases the degree of the polynomials ap- (15)
pearing in the problem and hence the dimension of tiahere the optimization variables ayeando,,, anda de-
SDP in the SOS method. notes an ordered set of integdrs }.

Another utility function that can be used to represent Fixing D where)"; o; < D, and equating the coeffi-
sigmoidal functions is the following rational function:  cients on the two sides of the equality in (15), yields a
. linear program (LP). (Note that there are no SOS terms,
s therefore no semidefiniteness conditions.) As before, in-
a+zy’ creasing the degreP gives higher order relaxations and
a tighter bound.
where the inflection point is? = (““=)/" and the  Wwe provide a (partial) price interpretation for prob-
slope at the inflection point &, (2°) = %(a(ﬁlfl))l/”. lem (15). First, normalize each capacity constraint as
Letys = Us(zs), the NUM problem in this case is equiv-1 — u;(z) > 0, wherew;(z) = >sesa) xs/c;. We can

Us(zs) =




interpretu; (x) aslink usage or the probability that linK depends on the rates. The physical meaning of such
is used at any given point in time. Then, in (15), we hay@ices, and the computational aspects of this relaxation
terms linear inu such aso;(1 — w;(x)), in whicho; has remain to be explored.

a similar interpretation as in concave NUM, as the price

of using link! (at full capacity, due to the normalization). v CoNCLUSIONS AND EURTHER EXTENSIONS

We alsot::tviS'T;:C:ht:m:sb?bqpﬁigm_ &2 E]i)g(;g We consider the NUM problem in the presence of in-
uk(z)), indi P Hity Gimu UsIS- elastic flowsj.e., flows with nonconcave utilities. Despite

age of linksj andk, for links whose usage probabilities. o .
. its practical importance, this problem has not been stud-
are independeng(g, they do not share any flows). Prod- . ; .
. 2 ied widely, mainly due to the fact it is a nonconvex, NP-

ucts of more terms can be interpreted similarly.

: o S hard problem. There has been no effective mechanism,
While the above price interpretation is not complete an . o .

o . centralized or distributed, to compute the globally optimal
does not justify all the terms appearing in (18)g, pow-

o . . rate allocation for nonconcave utility maximization prob-
ers of the constraints; product terms for links with Shalr(?ems in networks. This limitation has made performance

flows), it does provide some useful intuition: this rela).(éssessment and design of networks that include inelastic

ation results in a pricing scheme that provides better Bows very difficult

centives for the users to observe the constraints, by PUTiNG: - ddress this problem, we employed convex SOS

additional reward (since the corresponding term adds p?gl'axations, solved by a sequence of SDPs, to obtain

itively to the utility) for simultaneously keeping two Iinksh. h lity, | inalv tiah I
free. Such incentive helps tighten the upper bound anI qualty, increasingly tighter upper bounds on tota

; ) . . achievable utility. In practice, the performance of our
eventually achieve a feasible (and optimal) allocation. . .
) o . : : SOSTOOLS-based algorithm was surprisingly good, and
This relaxation is computationally attractive since w,

need to solve an LPs instead of the previous SDPs at eggH_nds obtained using a polynomlal-tlme_ (and indeed a
level. However, significantly more levels may be require W-order and of_ten_ minimal order) rglaxatlon were found
P ' 0 be exact, achieving the global optimum of nonconcave
NUM problems. Furthermore, a dual-based sufficient test,
if successful, detects the exactness of the bound, in which
B. Relaxation with no product terms case the optimal rate allocation can also be recovered.
Putinar [14] showed that a polynomial positive over &his surprisingly good performance of the proposed algo-
compact set (with an extra assumption that always hold&m brings up the question whether there is any particu-
for linear constraints as in NUM problems) can be reprér property or structure in nonconcave NUM that makes
sented as an SOS-combination of the constraints. THigspecially suitable for SOS relaxations.
yields the following convex relaxation for nonconcave We further examined the use of two more specialized

NUM problem: polynomial representations, one that uses products of con-
straints with constant multipliers, resulting in LP relax-
maximize vy ations; and at the other end of spectrum, one that uses a
subject to ‘linear’ combination of constraints with SOS multipliers.
L . . . ipe
v =25 Us(s) = iy ou(x) (e — Xsesqy ¥s), VX We expect these relaxations to give higher order certifi-
o(x)is SOS cates, thus their potential computational benefits need to

(16) Dbe examined further. We also show they admit useful eco-
where the optimization variables are the coefficients ffbmics interpretationse(g, prices, incentives) that pro-
oy(x). Similar to the SOS relaxation, fixing the ordBr vide valuable insight on how the SOS relaxations work in
of the expression in (16) results in an SDP. This relage framework of link congestion pricing for the simulta-
ation has the nice property that no product terms appeagous usage of multiple links.
that is, the relaxation becomes exact with a high enoughanother research issue of interest in nonconcave NUM
D without the need of product terms. However, this deroblems is decentralization methods. Algorithm 1 is not
gree might be much higher than what the previous SQ8sy to decentralize, given the products of the constraints
method requires. or polynomial multipliers that destroy the separable struc-

We note yet another price interpretation: this time there of the problem. However, when relaxations become
link price is given by an SOS polynomial multiplier thaiexact, the sparsity pattern of the coefficients can provide

2 . . . information about partially decentralized computation of
From a numerical point of view, the recent paper [8] reports conver-

gence problems with this type of relaxation, but the problematic cadeBtimal rates. For example, if after solving the NUM off-
do not include our problem. line, we obtain an exact bound, then if the coefficient of



the cross-ternx;z; turns out to be zero, it means users[16] R. T. Rockafellar, “Lagrange multipliers and optimalitBIAM
and;j do not need to communicate to each other to find Reviewyol. 35, pp. 183-283, 1993.

. . . . : ; ] S. Shenker, “Fundamental design issues for the future Internet,”
their optimal rates. An interesting next step in this area B IEEE J. Sel. Area Commuol. 13, no. 7, pp. 1176-1188, Sept,

research is to investigate distributed version of Algorithm 1995

1 through message passing among clusters of netwg N. Z. Shor, “Quadratic optimization problemsSoviet J. Com-
nodes and links. It is also worth continuing to explore Pput. Systems Sciol 25, pp. 1-11, 1987.

other types of nonconcave functions that can be tral%g] G. St.engle, “A Nullstellensatz and a Positivstellensatz in semial-
formed into polynomials and handled by SOS methods, gebraic geometryMath. Ann. vol. 207, pp.87-97, 1974.

in addition to the two sigmoidal forms we already exam-

ined in this paper.

ACKNOWLEDGEMENT

We would like to thank very helpful discussions with
Pablo Parrilo, Steven Low, and John Doyle.

REFERENCES

[1] D.P.Bertsekaf\onlinear ProgrammingAthena Scientific, 1999.

[2] S. Boyd and L. Vandenbergh€ponvex OptimizationCambridge
University Press, 2004.

[3] M. Chiang, S. Zhang, and P. Hande, “Distributed rate allocation
for inelastic flows: Optimization framework, optimality condi-
tions, and optimal algorithmsProc. IEEE InfocomMiami, FL,
March 2005.

[4] D. Handelman, “Representing polynomials by positive linear
functions on compact convex polyhedr&écific J. Math.,vol.
132, pp. 35-62, 1988.

[5] D. Henrion, J.B. Lasserre, “Detecting global optimality and ex-
tracting solutions in GloptiPoly,” Research report, LAAS-CNRS,
2003.

[6] F.P.Kelly, A. Maulloo, and D. Tan, “Rate control for communica-
tion networks: shadow prices, proportional fairness and stability,”
Journal of Operations Research Societg|. 49, no. 3, pp.237-
252, March 1998.

[7] J.B. Lasserre, “Global optimization with polynomials and the
problem of moments,'SIAM J. Optim.vol. 11, no. 3, pp. 796-
817, 2001.

[8] J.B. Lasserre, “Polynomial programming: LP-relaxations also
converge,”SIAM J. Optimizationvol. 15, no. 2, pp. 383-393,
2004.

[9] J.W. Lee, R. R. Mazumdar, and N. Shroff, “Non-convex optimiza-
tion and rate control for multi-class services in the Interrietgc.
IEEE InfocomHong Kong, China, March 2004.

[10] S. H. Low, “A duality model of TCP and queue management
algorithms,”IEEE/ACM Tran. Networking/ol. 11, no. 4, pp. 525-
536, Aug. 2003.

[11] P. A. Parrilo, Structured semidefinite programs and semi-
algebraic geometry methods in robustness and optimization,” PhD
thesis, Caltech, May 2002.

[12] P. A. Parrilo, “Semidefinite programming relaxations for semi-
algebraic problemsMath. Program, vol. 96, pp.293-320, 2003.
[13] S. Prajna, A. Papachristodoulou, P. A. Parrilo, “SOSTOOLS:
Sum of squares optimization toolbox for Matlab, available from

http://www.cds.caltech.edu/sostools , 2002-04.

[14] M. Putinar, “Positive polynomials on compact semi-algebraic
sets,”Indiana University Mathematics Journalpl. 42, no. 3, pp.
969-984, 1993.

[15] R.T. RockafellarNetwork Flows and Monotropic Programming
Athena Scientific, 1998.



