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Abstract—Random access has been studied for decades as a
simple and practical wireless medium access control (MAC).
Some of the recently developed distributed scheduling algorithms
for throughput or utility maximization also take the form of
random access, although extensive message passing among the
nodes is required. In this paper, we would like to answer this
question: is it possible to design a MAC algorithm that can
achieve the optimal network utility without message passing?
We provide the first positive answer to this question through
a simple Aloha-type random access protocol. We prove the
convergence of our algorithm for certain sufficient conditions on
the system parameters, e.g., with a large enough user population.
If each wireless node is capable of decoding the source MAC
address of the transmitter from the interferring signal, then
our algorithm indeed converges to the global optimal solution
of the NUM problem. If such decoding is inaccurate, then the
algorithm still converges, although optimality may not be always
guaranteed. Proof of these surprisingly strong performance
properties of our simple random access algorithm leverages the
idea from distributed learning: each node can learn as much
about the contention environment through the history of collision
as through instantaneous but explicit message passing.

Index Terms—Network utility maximization, random access,
non-convex optimization, message passing, wireless scheduling.

I. INTRODUCTION

FOR over thirty years, researchers have studied how well
simple random access protocols can work. Since 1992,

some of the distributed scheduling algorithms for through-
put maximization take the form of random access [1]–[3],
although message passing among the nodes is required. Sim-
ilarly, utility optimization with infinite backlog has been
achieved with the help of message passing [4]–[6]. Very
recently, in [7], [20] a CSMA-type random access algorithm
without message passing is proved to be utility-optimal. How-
ever, it still remains open whether even simpler protocols,
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such as Aloha-type random access without carrier sensing,
can approach utility-optimality. In this paper, we provide the
first positive answer to this question.

In the existing contention-based medium access control
(MAC) protocols, there is usually a tradeoff between system
performance (e.g., throughput and fairness) and the amount of
explicit message passing required among users. One example
is the IEEE 802.11 distributed coordination function (DCF),
where users do not explicitly exchange any message related to
their transmission probabilities1 and adapt their transmission
probabilities only based on the binary implicit feedback from
the network (e.g., collision or not). This typically leads to
low throughput and unfair resource allocation [8]. On the
other hand, several MAC algorithms (e.g., [4]–[6]) have been
designed based on the framework of network utility maximiza-
tion (NUM), which lead to the optimal system performance
but without taking the signalling overhead into account. These
algorithms require extensive frequent message passing among
users. Considering the fact that any message transmission
leads to additional contention in the network, it is of practical
importance to design a MAC algorithm that can achieve the
optimal performance without message passing.

In this paper, we propose a simple and efficient MAC algo-
rithm without message passing based on our recent results in
[9]. Compared with the previous algorithms, our NUM-based
random access algorithms in [9] support a wider range of
utility functions, converge faster, and allow fully asynchronous
operations among users. However, message exchange is still
needed in [9]. In this paper, we show that in the important
special case of a fully interfered wireless network topology
where all users are within the interference range of each other
(e.g., as in wireless personal and local area networks), we
can completely eliminate the need for message passing. We
prove the convergence of our algorithm for certain sufficient
conditions on the system parameters, e.g., sufficiently large
user population. If each wireless node is capable of decoding
the source MAC address of the transmitter from the inter-
ferring signal, then our algorithm converges to the global
optimal solution of the NUM problem. If such decoding is
inaccurate, the algorithm still converges, although optimality
may not be guaranteed. The estimation techniques we used in
this paper are related to [10], although our estimation model is
more elaborate and captures more information (i.e., each user’s
transmission probability). Simulation results show that our
algorithm is robust to changes in user populations and channel

1In this paper, we use the term “messages” to denote control signals that are
explicitly related to wireless users’ transmission probabilities. For example,
IEEE 802.11 DCF does not have any explicit message passing, although it
has various other control signals (e.g., RTS/CTS/ACK).
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Fig. 1. A single-hop wireless ad-hoc network with N = 3 users. Each user
includes a wireless link and its dedicated transmitter and receiver nodes.

conditions. These encouraging results also provide insights
to design scheduling algorithms without message passing for
more general topologies: distributed learning from contention
history may be as efficient as from explicit message passing.

The rest of this paper is organized as follows. The system
model and problem formulation are described in Section II.
Our algorithm is presented in Section III. Convergence and
optimality of the proposed algorithm are analytically proved
in Section IV. Simulation results are shown in Section V.
Conclusions and future work are discussed in Section VI.

II. SYSTEM MODEL

Consider a single-hop wireless ad-hoc network with N =
{1, . . . , N} as the set of wireless links. Each link, together
with its dedicated transmitter and receiver nodes, is called
a user. A sample network with 3 users is shown in Fig.
1. We assume that each user’s receiver node can hear other
user’s transmissions. Thus, each user interferes with all other
users. This models some important wireless networks includ-
ing wireless personal area networks where wireless devices
interact with each other (e.g., in an office) as well as indoor
wireless local area networks where nodes interact with each
other and an access point (e.g., in a large conference room).
Time is divided into equal-length slots. At each time slot, user
i transmits with probability pi ∈ Pi = [Pmin

i , Pmax
i ], where

0 < Pmin
i < Pmax

i < 1. A transmission is successful if it is
the only transmission in the current time slot. Similar to [4],
[6], we assume infinite-backlog at the transmitter nodes of the
users. Let ri denote the average rate for user i. We have2:

ri(p) = γipi

∏
j∈N\{i}(1 − pj), ∀ i ∈ N , (1)

where p = (pi, ∀i ∈ N ) is the vector of all users’ transmission
probabilities and γi denotes the peak data rate for user i. Here,
we assume that either the channel is fixed or it changes very
slowly such that γi can assume to be fixed for all i ∈ N .

Each link i ∈ N maintains a utility which is an increasing
and concave function of ri and indicates link i’s level of
satisfaction on its average data rate. The utility of link i is
denoted by ui(ri(p)) which is also a function of p. We are
interested in finding the value of p that solves the following
network utility maximization (NUM) problem [11]:

max
p∈P

∑
i∈N ui(ri(p)), (NUM)

2If the underlying communication channel is lossy and we know exact
packet error rate, then the average rate model in (1) needs to be modified to
incorporate the impact of packet loss due to channel imperfections as in (7).
However, in this paper, we assume that the packet error rate is not known;
thus, the average data rate is estimated as the current form in (1).

where P = {p : pi ∈ Pi, ∀ i ∈ N}, and the utility functions
are α-fair [12]. That is, ui(ri(p)) = (1 − α)−1ri(p)1−α if
α ∈ (0, 1) ∪ (1,∞), and ui(ri(p)) = log ri(p), if α = 1.

III. ALGORITHM

1) Local Optimization: For each wireless user i, consider
the following local optimization problem:

max
pi ∈Pi

∑
j∈N uj(rj(pi, p−i)), (LOCAL-NUM)

where p−i = (pj, ∀j ∈ N\{i}) denotes the transmission
probabilities of all users other than user i. To solve opti-
mization problem (LOCAL-NUM), user i will choose pi to
maximize the total network utility, assuming that none of the
other users change their transmission probabilities.

Theorem 1: For each user i ∈ N , the unique global optimal
solution of problem (LOCAL-NUM) is p∗i (pi) = fi(p−i),
where the mapping function fi(p−i) is defined as:

fi(p−i) =
[
1/

(
1 + α

√
vi(p−i)

)]Pmax
i

Pmin
i

. (2)

Here [x]ab = max [min [x, a] , b] and

vi(p−i) = γi
α−1 ∑

j∈N\{i} (1/γj)
α−1 (1/pj − 1)α−1

. (3)

The proof of Theorem 1 is similar to that of [9, Theorem 1]
and is omitted for brevity. It is clear that to compute fi(p−i)
in (2), the only information user i needs from other users is
vi(p−i). If each user i can estimate the value of

mj = (1/γj)
α−1 (1/pj − 1)α−1

, ∀ j ∈ N\{i}, (4)

then it can compute vi(p−i) = γi
α−1

∑
j∈N\{i} mj and set

its transmission probability pi = fi(p−i). Note that for each
j∈N\{i}, mj is bounded between Mmin and Mmax, which
are defined as follows. If α ≥ 1, then Mmin = (1/γmax)α−1

(1/Pmax−1)α−1 and Mmax =(1/γmin)α−1(1/Pmin−1)α−1,
where Pmin = mini∈N Pmin

i , Pmax = maxi∈N Pmax
i ,

γmin = mini∈N γi, and γmax = maxi∈N γi. If α < 1,
then Mmin = (1/γmin)α−1(1/Pmin − 1)α−1 and Mmax =
(1/γmax)α−1(1/Pmax − 1)α−1. As shown in [9, Section IV-
A], if each user i updates its transmission probability pi

according to (2), then the system will converge to the optimal
solution of problem (NUM). The question is how to obtain
the values of mj for all j �= i. Next, we show how this can
be achieved through local observations of the shared channel.

2) Learning from Contention History: From (4), we can
see that only the values of γj and pj are required to calculate
the value of message mj . Notice that α is the same for all
users. The value of the peak rate γj depends on the channel
gain between the transmitter and receiver of user j. Thus, it
can only be measured by user j and then announced to the
whole network once user j joins the network. The remaining
task is to determine how to obtain the value of pj .

From user i’s viewpoint, any time slot falls into one of the
following possible states: idle (no user transmits), busy (at
least one other user transmits), success (user i transmits suc-
cessfully), and failure (user i transmits but it fails). Let pidle

i ,
pbusy

i , psucc
i , and pfail

i denote the probabilities of experiencing
these four states, respectively. Also let perr

i,j denote the packet
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error rate of the communication channel from the transmitter
node of user j to the receiver node of user i. We have:

pidle
i =

∏
j∈N (1 − pj) , (5)

pbusy
i = (1 − pi)

(
1 − ∏

j∈N\{i}(1 − pj)
)

= (1 − pi) −
∏

j∈N (1 − pj)

= (1 − pi) − pidle
i ,

(6)

psucc
i = pi

(∏
j∈N (1 − pj)

) (
1 − perr

i,i

)
= (pi/(1 − pi))

(∏
j∈N (1 − pj)

) (
1 − perr

i,i

)
= (pi/(1 − pi)) pidle

i (1−perr
i,i),

(7)

and

pfail
i = pi

((
1− 1

1−pi
pidle

i

)
+perr

i,i −
(
1 − 1

1−pi
pidle

i

)
perr

i,i

)

= pi

((
1 − 1

1 − pi
pidle

i

)
+

(
1

1 − pi
pidle

i

)
perr

i,i

)

= pi

(
1 −

(
1

1 − pi
pidle

i

) (
1 − perr

i,i

))

= pi−
(

pi

1 − pi
pidle

i

) (
1−perr

i,i

)
.

(8)

From (5), the channel is idle if all users are silent. From (6),
the channel is busy from user i’s viewpoint as long as user i is
silent (so that it can sense the channel) and at least one other
user j �= i is transmitting packets. The former has probability
(1−pi) while the latter has probability (1−∏

j∈N\{i}(1−pj)).
From (7), the transmission from the transmitter node of user
i to the receiver node of user i is successful if the transmitter
node of user i transmits the packet, no other user j �= i
transmits any packet at the same time, and the transmitted
packet is not corrupted. The latter happens with probability
(1− perr

i,i). Finally, from (8), user i observes a failure slot if it
transmits a packet and the transmitted packet either collides
with some other transmission(s), or gets corrupted, or both.
We notice that the probability values pidle

i and pbusy
i do not

depend on the value of perr
i,i, while psucc

i and pfail
i do.

Since user i knows the local transmission probability pi, it
can estimate pidle

i using either (5) or any of the expressions in
(6)-(8). However, it is clear that user i is still unable to estimate
the individual transmission probability pj for any j �= i even
if it can accurately estimate all the state probabilities pidle

i ,
pbusy

i , psucc
i , and pfail

i . In fact, finding the values of individual
transmission probabilities requires gathering more individual
information from other users as we will explain next.

Recall that, at a busy time slot seen by user i ∈ N , at least
one other user transmits. Since users can hear each other, user
i may successfully decode the transmission of user j �= i with
a probability that can be obtained as:

pdecd
i,j = pj(

∏
l∈N\{j}(1 − pl))(1 − perr

i,j)

= (pj/(1 − pj))
(∏

l∈N (1 − pl)
)
(1 − perr

i,j).
(9)

Let ndecd
i,j denote the number of time slots between any two

consecutive successful decoding of transmissions of user j
by user i. Random variable ndecd

i,j has an i.i.d. geometric
distribution with probability pdecd

i,j . Therefore, we indeed have:

pdecd
i,j = 1/(1 + n̄decd

i,j ), (10)

where n̄decd
i,j is the mean value of ndecd

i,j and can be locally esti-
mated by user i through observation of the channel contention
history. Let T i

j,decd denote the set of time slots at which user
i decodes the transmissions of user j �= i. We estimate n̄decd

i,j

iteratively through a low-pass filter:

n̄decd
i,j (t +1) =

(1−�i,j(t))n̄decd
i,j (t)+�i,j(t)ndecd

i,j (t)I{t∈T i
j,decd},

(11)

where n̄decd
i,j (t) and ndecd

i,j (t) denote the estimation of n̄decd
i,j and

the measurement of ndecd
i,j at time slot t, respectively, and I{·}

is an indication function. Here �i,j is a diminishing stepsize.
Notice that in practice, the transmitted signal by the transmitter
node of user j can be decoded by the network interface of user
i’s receiver node; however, as its destination MAC address
is not the same as the one in the receiver node of user i,
the packet is simply discarded. In our proposed protocol, the
receiver node of user i needs to obtain the sender’s MAC
address from the packet header before discarding the packet3.

Similarly, let nidle
i denote the number of non-idle time slots

that user i observes between any two consecutive idle time
slots. User i can estimate pidle

i as follows:

pidle
i = 1/(1 + n̄idle

i ), (12)

where n̄idle
i is the mean value of nidle

i . Substituting (5), (10),
and (12) into (9), for each j ∈ N\{i}, we have:

1/pj − 1 =
(
(1 + n̄decd

i,j )/(1 + n̄idle
i )

)
(1 − perr

i,j). (13)

Let T i
idle denote the set of time slots at which user i observes

an idle time slot. We estimate n̄idle
i iteratively:

n̄idle
i (t+1) = (1−ρi(t))n̄idle

i (t)+ρi(t)nidle
i (t)I{t∈T i

idle}, (14)

where n̄idle
i (t) and nidle

i (t) denote the estimation of n̄idle at
time t and the measurement of nidle

i at time t, respectively.
Here ρi is a diminishing stepsize. Based on the asynchronous
stochastic approximation theory [13], we know that the error
for estimating the decoding and idle probabilities decrease to
zero (i.e., accurate estimations) when users do not change their
transmission probabilities (i.e., the system is stationary).

For each user i and any other user j �= i, given the system
parameters γj , n̄decd

i,j and n̄idle
i , we define:

mi
j(t) = (1/γj)α−1

(
(1 + n̄decd

i,j (t))/(1 + n̄idle
i (t))

)α−1
, (15)

where mi
j(t) denotes the estimation of mj made by user i at

time slot t. In general, we have:

mi
j(t) = βi

j(t) mj(t), (16)

where βi
j(t) > 0 is the estimation gain, which can represent

either accurate estimation (i.e., βi
j(t) = 1), over-estimation

(i.e., βi
j(t) > 1) or under-estimation (i.e., βi

j(t) < 1). From
(4) and (13), if the estimations on n̄decd

i,j and n̄idle
i are accurate

(i.e., they accurately represent the mean values of random
variables ndecd

i,j and nidle
i , respectively) and the channel is also

perfect (i.e., it has zero packet error rate), then βi
j(t) = 1

3We notice that, in general, decoding header information of packets is
more accurate than payload information. For example, in HiperLAN, header
is transmitted at lower bit rate and higher reliability. Therefore, decoding MAC
address from the header is less prone to error due to channel imperfections.



4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 2, FEBRUARY 2009

and mi
j(t) = mj(t) for all j ∈ N\{i}. Notice that if the

value of the existing packet error rate perr
i,j is known (e.g., via

measurements at the physical layer), then we can redefine:

mi
j(t) = (1/γj)α−1

(
(1 + n̄decd

i,j (t))/(1 + n̄idle
i (t))

)α−1

(1 − perr
i,j)α−1

, (17)

and obtain a more accurate estimation of mj(t) by canceling
out the effect of wireless channel imperfections. However, in
this paper, we consider the general case where the packet error
rates are not known by the users.

For each user i∈N and for all j∈N\{i}, let T i
j,m denote

the set of all time slots at which user i updates its estimation of
mi

j according to (17). We select set T i
j,m such that as time goes

by, the minimum time difference between any two consecutive
slots in the union of sets {T i

j,m, ∀j ∈ N\{i}} increases. As
a result, for each user j, we update mi

j less frequently to
collect more samples of nidle

i and ndecd
i,j . Thus, the estimations

of mean values n̄idle
i and n̄decd

i,j improve gradually and become
asymptotically accurate. We also reset the diminishing step-
sizes ρi and �i,j to 1 after each t ∈ T i

j,m so that the errors
in previous estimations do not affect new estimations. Based
on these assumptions, there exists a constant βi

j > 0 such that
limt→∞ βi

j(t) = βi
j . From (15) and (16), we have:

βi
j = 1/(1 − perr

i,j)
α−1, ∀ i, j ∈ N , i �= j. (18)

From (18), if the communication channel is perfect, then
βi

j = 1 and all estimations are asymptotically accurate. For a
lossy channel, if α < 1, then βi

j < 1 and mi
j is asymptotically

under-estimated for all j �= i. On the other hand, if α > 1,
then βi

j > 1 and mi
j is asymptotically over-estimated.

3) Distributed MAC Algorithm: Our proposed distributed
random access algorithm without explicit message passing
(except when each user joins or leaves the network) is
shown in Algorithm 1. In this algorithm, each user i ∈ N
continuously updates n̄idle

i and n̄decd
i = (n̄decd

i,j , ∀j ∈ N\{i})
based on its local observations from the channel to estimate
mi =(mi

j , ∀j∈N\{i}). Then, it chooses pi according to (2)
with vi = γα−1

i

∑
j∈N\{i} mi

j . Here Ti,p denotes the set of all
time slots at which user i updates its transmission probability
pi. Notice that the updates are asynchronous across wireless
users which include synchronous updates as a special case.

IV. CONVERGENCE AND OPTIMALITY

For each i∈N, and at any time t∈Ti,p, Algorithm 1 updates

pi(t + 1) = f ′
i(p−i, t) =

[
1/

(
1 + α

√
v′i(p−i, t)

)]Pmax
i

Pmin
i

,

where v′i(p−i, t)=
∑

j∈N\{i} (γi/γj)
α−1 (1/pj − 1)α−1

βi
j(t).

For any t ≥ 0, we define f ′(p, t) = (f ′
i(p−i, t), ∀ i ∈ N ).

Here f ′(p, t) is a time-varying vector mapping. Since βi
j(t)

approaches βi
j as t → ∞ for all i, j ∈ N , the sequence of

mapping {f ′ (p, t)} converges to a unique mapping f ′ (p,∞)
as t → ∞. That is, for any p ∈ P and any ε > 0, there exists
tε ≥ 0 such that ‖f ′(p, t) − f ′(p,∞)‖ < ε for all t ≥ tε.

Let V min and V max denote the lower and upper bounds on
v′i(p−i, t) for each i ∈ N and at any time t. If α ≥ 1, then:

V min = (N − 1)Mmin(γmin)α−1, (19)

V max = (N − 1)Mmax(γmax)α−1. (20)

Algorithm 1 Executed by each user i ∈ N .

1: Allocate memory for pi and mi = (mi
1, · · · , mi

N).
2: Allocate memory for n̄decd

i and n̄decd
i = (n̄decd

i,1 , · · · , n̄decd
i,N ).

3: Randomly choose pi ∈
[
Pmin

i , Pmax
i

]
.

4: Randomly choose mi
j ∈ [

Mmin, Mmax
]

for all j ∈ N .
5: Choose n̄idle

i = 1 and n̄decd
i,j = 1 for all j ∈ N .

6: Broadcast the fixed data rate γi to all other users.
7: repeat
8: Transmit with probability pi.
9: Update n̄idle

i and n̄decd
i according to Eqs. (14) and (11).

10: if t ∈ Ti,p then

11: Update pi =
[
1/

(
1+ α

√
γi

α−1
∑

j∈N\{i} mi
j

)]Pmax
i

Pmin
i

.

12: end if
13: if t ∈ T i

j,m then
14: Update mi

j according to Eq. (15).
15: end if
16: until the user decides to leave the network.
17: Broadcast termination message.

If α < 1, then we define:

V min = (N − 1)Mmin(γmax)α−1, (21)

V max = (N − 1)Mmax(γmin)α−1. (22)

Theorem 2: Assume that there exists t′0 ≥ 0 such that for
all t ≥ t′0 and any p ∈ P , we have:

βmax(t)
βmin(t)

( |1 − α|
α

Ψ Φ(V min, V max)
)2 (

γmax

γmin
Γ
)|1−α|

< 1,

(23)
where βmin(t) = mini,j∈N βi

j(t), βmax(t) = maxi,j∈N βi
j(t),

Ψ =max
{

1
Pmin(1 − Pmin)

,
1

Pmax(1 − Pmax)

}
, (24)

Γ =
Pmax(1 − Pmin)
Pmin(1 − Pmax)

, (25)

and

Φ(V min, V max)=

⎧⎪⎪⎨
⎪⎪⎩

(V max)1/α

(1+(V max)1/α)2
, if V max ≤ 1,

(V min)
1/α

(1+(V min)1/α)2
, if V min ≥ 1,

0.25, otherwise.

(26)

Then, Algorithm 1 globally and asynchronously converges to
the unique fixed point of mapping f ′ (p,∞).

The proof of Theorem 2 is given in the Appendix. Notice
that, at any time t ≥ 0, βmin(t) and βmax(t) are bounded:

(Mmin/Mmax) ≤ βmin(t) ≤ βmax(t) ≤(Mmax/Mmin).
(27)

Therefore, all the terms in (23), except Φ, are bounded and
independent of the number of users N . Thus, Φ can be
arbitrarily close to 0 if N is large enough. Therefore,

Corollary 1: For any choice of system parameters, there
exists N̂ > 0, such that Algorithm 1 converges to the unique
fixed point of mapping f ′ (p,∞), if the number of users N >
N̂ , i.e., there are enough users competing for the channel.

As an example, assume that P min =0.1, P max =0.9, α=0.9,
γmax = γmin, and for all t > 1 we have: βmax(t)/βmin(t) ≤ 2.
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Fig. 2. Simulation results for Algorithm 1 when α = 0.6. The number of
users and the features of the communication channel change after t = 10s.
The optimal transmission probabilities before t = 10s (i.e., dashed lines) and
after t = 10s (i.e., dotted lines) are obtained using [9, Algorithm 1].

In that case, from Theorem 2, convergence of Algorithm 1 is
guaranteed as long as the number of users N ≥ 4.

We notice that Theorem 2 and Corollary 1 are general and
do not depend on the exact values of the estimation errors as
t → ∞; however, the performance at the asymptotic fixed
point still depends on the accuracy of the estimations. In
fact, as long as there are enough learning opportunities for
users, learning the behavior of other users can catch up with
the environment changes. The following key theorem can be
shown for the case of perfect communication channels.

Theorem 3: If the channel is perfect such that limt→∞
βmin(t) = limt→∞ βmax(t) = 1, then the fixed point of
Algorithm 1 is the global optimal solution of problem (NUM).

The proof of Theorem (3) is similar to that of [9, Theorem
4]. Notice that since limt→∞ βi

j(t) = 1, we have f ′(p,∞) =
f(p) =

(
fi(p−i), ∀i ∈ N )

, where fi(p−i) is as in (2). In
fact, when each learning step is accurate, then distributed
learning becomes as effective as message passing.

From Theorems 2 and 3, if the channel is perfect and
sufficient condition (23) holds, Algorithm 1 asynchronously
converges to the unique global optimal solution of non-convex
problem (NUM). If the channel is not perfect, although the
algorithm still converges, optimality is not always guaranteed.

V. SIMULATION RESULTS

To evaluate the performance of our proposed distributed
algorithm, we develop a discrete-event simulator that imple-
ments Algorithms 1 and the IEEE 802.11 DCF access method.
We first consider a network with N = 4, Pmin = 0.01, and
Pmax = 0.99. We set γ1 = 6, γ2 = 18, γ3 = 36, and γ4 =
54, all in Mbps. Utility parameter α = 0.5 < 1. Notice that
none of the previous NUM-based MAC algorithms (e.g, [4]–
[6]) support α-fair utility functions with α∈(0, 1) because of
non-convexity (see [9, Sections II and IV-A]). Each slot is 20
μs (as in 802.11a) and the simulation time is 20s. We assume
that from time t = 0 to t = 10s, the channel is perfect and
N = 4. Then, from t = 10s to t = 20s, the channel is lossy
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Fig. 3. Trend of the adjusted transmission probabilities when Algorithm 1
is being used, the number of users N = 10, and we have: α = 2.
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Fig. 4. Comparison between Algorithm 1 in [9] (i.e., the algorithm with
explicit message passing) and our proposed Algorithm 1 (i.e., the algorithm
without explicit message passing) in term of the signalling overhead when
the number of users varies from 10 to 50.

and N = 3 (i.e., user 4 leaves the network). Packet error rates
are randomly selected between 0 and 0.01 at t = 10s and
then become fixed until t = 20s. The diminishing stepsizes
are selected in the form of 1/t while t is the number of time
slots. Recall from Section III-2 that for any i, j ∈ N , the
stepsizes are reset after each t ∈ T i

j,m. Results are shown
in Fig. 2. We see that Algorithm 1 converges to a small
neighborhood of the optimal values fast. It is robust to the
change of user population and channel conditions. Similar
results can be obtained for α ≥ 1 and N > 4. For example,
the results when α = 2 and there are N = 10 users are shown
in Fig. 3.

Next, we compare the signalling overhead in our algorithm
with Algorithm 1 in [9]. We assume that each message value
requires two bytes. Simulation results are shown in Fig. 4.
The total amount of messages needed depend on the number
of iterations for convergence. We refer to Algorithm 1 as the
algorithm without message passing. It only requires one time
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Fig. 5. Comparison between Algorithm 1 and 802.11 DCF when N = 10.

message exchange when a user joins the network. We can see
that increasing the number of users increases the signalling
overhead in both algorithms. However, our algorithm requires
significantly less signalling compared to Algorithm 1 in [9].
When the number of users N = 50, our algorithm reduces the
signalling overhead by more than a factor of 40.

It is well-known that 802.11 DCF has a short-term fairness
problem, due to binary exponential backoff. Next, we compare
802.11 DCF with Algorithm 1 in terms of both throughput and
Jain’s fairness index [14]. The short-term fairness is obtained
using sliding windows with size of 200 slots. There are N =
10 users in the network and their fixed peak rates are randomly
selected between 6 and 54 Mbps. Simulation time is 100s.
The results when α varies between 0.5 to 5 are shown in
Fig. 5. We see that, parameter α acts as a knob to control
the tradeoff between efficiency and fairness. By increasing α
we can make the system more fair but less efficient (and vice
versa). If α = 0.5, then the throughput is 29.7% higher than
DCF (see Fig. 5(a)). Besides, for any choice of α ∈ [0.5, 5],
the fairness is much better than DCF (Fig. 5(b)).

VI. CONCLUSION AND FUTURE WORK

We developed the first utility-optimal Aloha-type random
access protocol without explicit message passing, based on
distributed learning through contention history. Simulation
results show that our algorithm achieves a better efficiency-
fairness trade-off compared with the IEEE 802.11 DCF. It
is also robust to the changes of user population and channel
conditions.

This work represents a first step towards building practical
and optimal random access protocols without message passing.
Results can be extended in several directions. One of these
directions is achieving the maximum stability region where
the queues have finite-backlog [15], [16]. For example, in [16],
a queue back-pressure random access algorithm is proposed
which aims to adjust the transmission probabilities to achieve
optimal network utility and queue stability. The proposed
algorithm requires frequent message exchange among the
nodes. In this regard, our estimation techniques in Section

III can be similarly used to eliminate the need for message
passing; thus, significantly reducing the signalling overhead.

We may also relax the need for equal-length time slots,
following the techniques in [17, Section IV], where a utility-
optimal random access algorithm is proposed for logarithmic
utilities in pure (un-slotted) Aloha systems. It is also worth
mentioning that since we limit our study to the topology,
where each user can hear transmissions from every other user,
the hidden/exposed terminal is not a problem.

A challenging extension of the current paper is distributed
utility-optimal random access without signalling for general
network topologies, where each user may hear the transmis-
sions from only a subset of other users. In this case, the proof
of convergence in Theorem 2 will still be valid after slight
modifications. However, the performance may not be optimal
in general. In fact, it has been recently shown in [18] that in a
network with only three users, where the two side users cannot
hear each other’s transmissions and the utility parameter α=0,
the wireless users cannot adjust their transmission probabil-
ities to achieve exact optimal network performance without
message passing. Therefore, we conjecture that there indeed
does not exist Aloha-type algorithm that converges to the
optimal network performance without any explicit information
exchange in a general topology scenario, unless all users can
hear each other’s transmissions as studied in this paper or
carrier-sensing multiple access is used as in [7], [20].

APPENDIX

A. Proof of Theorem 2

For any p ∈ P and t ≥ t′0, the Jacobian J(p, t) is defined
as an N × N matrix whose entry in row i and column j is
∂fi(p, t)/∂pj . We can show that:

‖J ′(p, t)‖∞ ≤ |1 − α|
α

Ψ Φ, (28)

and

‖J ′(p, t)‖1 ≤ |1 − α|
α

βmax(t)
βmin(t)

Ψ Φ
(

(
γmax

γmin
) Γ

)1−α

. (29)

Let p̃, p̂ ∈ P . From (23), (28), (29), and by Cauchy-Schwarz
inequality we have [19, pp. 635]:

‖f ′(p̃, t) − f ′(p̂, t)‖2 ≤ ‖J ′(p, t)‖2 ‖p̃ − p̂‖2

≤
√
‖J ′(p, t)‖∞‖J ′(p, t)‖1 ‖p̃− p̂‖2 < ‖p̃ − p̂‖2,

where p is any convex combination of p̃ and p̂. Thus, for any
t ≥ t′0, vector function f ′(p, t) is a contraction mapping and
has a unique fixed point [19, pp. 183], denoted by p∗

t . We also
denote the unique fixed point of f ′ (p,∞) by p∗

∞. Thus,

‖f ′(p, t) − p∗
t ‖2 ≤ ηt ‖p − p∗

t ‖2 ≤ η ξ, (30)

where ηt = ‖J ′(p, t)‖, η = maxt>t′0 ηt, and ξ = ‖p − p∗
t ‖2 .

Note that η < 1, and ξ is bounded. Since f ′ (p, t) is
continuous at p∗

t and limt→∞ f ′ (p, t) = f ′ (p,∞), we indeed
have limt→∞ p∗

t = p∗
∞. In other words, for any choice of

ε > 0, there exists a t0 ≥ t′0, such that:

‖p∗
t − p∗

∞‖2 ≤ ε, ∀t ≥ t0. (31)
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Together with (30), we have:

‖f ′ (p, t)− p∗
∞‖2≤ ‖f ′ (p, t)− p∗

t ‖2+‖p∗
t − p∗

∞‖2≤ η ξ + ε.

Similarly, we can show that:

‖f ′ (f ′ (p, t) , t + 1) − p∗
∞‖2 ≤∥∥f ′ (f ′ (p, t) , t + 1) − p∗

t+1

∥∥
2
+

∥∥p∗
t+1 − p∗

∞
∥∥

2

≤ η
(‖f ′ (p, t) − p∗

∞‖2 +
∥∥p∗

t+1 − p∗
∞

∥∥
2

)
+ ε

≤ η (η ξ + ε + ε) + ε = η (η ξ + 2ε) + ε.

For any k ≥ 0, we recursively define f ′k(p, t) =
f ′(f ′k−1(p, t), t + k − 1) where f ′0 = p. From (32), and
by mathematical induction, we can show that for any k ≥ 0,

∥∥∥f ′k(p, t) − p∗
∞

∥∥∥
2
≤ ηkξ +

2
(
1 − ηk

)
1 − η

ε − ε

< ηkξ +
1 + η

1 − η
ε.

(32)

For any ε > 0, there exist kε such that if k ≥ kε, then ηk ξ ≤
ε
2 . By choosing:

ε =
1 − η

1 + η

ε

2
, (33)

we have:∥∥∥f ′k(p, t) − p∗
∞

∥∥∥
∞
≤

∥∥∥f ′k(p, t) − p∗
∞

∥∥∥
2
< ε

2 + ε
2 = ε, (34)

where the first inequality comes from the fact that l∞ norm is
always less than or equal to l2 norm. This implies that, starting
from any initial point p ∈ P at time t ≥ t0, the transmission
probability of each user i ∈ N would be as close as desired
to the ith entry of p∗∞ after some finite number of slots. For
all time instances t≥ t0, we define:

ε′t =max
k≥0

∥∥p∗
k+t − p∗

∞
∥∥
∞ , (35)

ε′t = max
k≥0,p′∈P

‖f ′k+t−t0(p′, t0) − p∗
∞‖∞, (36)

and

εt =

⎧⎨
⎩

max
[
ε′t,

2(1+η)
1−η ε′t

]
, if t < t0+C,

max
[
ε′t,

2(1+η)
1−η ε′t, χ (C) εt−C

]
, otherwise,

(37)

where the function χ(C) = 1
2 (3+η

1+η ηC + 1), integer constant
C = �log(1+η

3+η )/ log (η)� + 1, and �·� denotes the ceiling
function. From (31) and (34), {ε′t} and {εt} are infinite
decreasing sequences and converge to zero as t → ∞.
Construct a new time sequence {t̄l} where t̄l = t0 + lC for
any integer l ≥ 0. Since χ (C) < 1, the sequence {εt} is
decreasing and in particular, we have liml→∞ εt̄l

= 0. For
each l ≥ 0, define Pt̄l

= {p : ‖p − p∗
∞‖∞ ≤ εt̄l

}. It is clear
that p∗∞ ∈ Pt̄l

and Pt̄l+1 ⊆ Pt̄l
for all l ≥ 0. Furthermore,

Pt̄l+l′ ⊂ Pt̄l
for some finite l′. For any p ∈ Pt̄l

,∥∥p − p∗̄
tl

∥∥
∞ ≤ ‖p − p∗

∞‖∞ +
∥∥p∗̄

tl
− p∗

∞
∥∥
∞ ≤ εt̄l

+ ε′t.

From (34), we know that:
∥∥f ′k (p, t̄l) − p∗

∞
∥∥
∞ < ηk

(
εt̄l

+ ε′̄tl

)
+

1 + η

1 − η
ε′̄tl

.

If εt̄l
= ε′̄tl

, then ε′̄tl
≤ 1−η

1+η

εt̄l

2 . On the other hand, if εt̄l
=

2(1+η)
1−η ε′̄tl

, or if εt̄l
= χ(C)εt̄l−C , then ε′̄tl

≤ εt̄l
and ε′̄tl

≤
1−η
1+η

εt̄l

2 . Thus, for all three possibilities in (37), we have

‖f ′C(p, t̄l) − p∗
∞‖∞ < ηC

(
εt̄l

+
1−η

1+η

εt̄l

2

)
+

1 + η

1 − η

1 − η

1 + η

εt̄l

2
= χ(C) εt̄l

≤ εt̄l+1.

Thus, for any choice of p ∈ Pt̄l
, the mapping f ′C (p, t̄l) ∈

Pt̄l+1 . Since both synchronous convergence and box conditions
hold, Algorithm 1 globally and asynchronously converges to
the unique fixed point p∗∞ [19, pp. 431].
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