due primarily to the low output conductance. The present devices exhibited an on/off current ratio of $\sim 10^4$ and a drain-gate breakdown voltage of 7V, apparently limited by gate leakage current (single channel 2D MESFET breakdown voltages of 20V will be reported elsewhere [8]). The S-parameters were measured using an HP 8510C network analyser up to 50GHz. A conventional microwave small signal circuit model was used for parameter extraction and de-embedding. The extracted parameters were relatively constant over the frequency range of interest and in good agreement with those values obtained at DC. The unity-gain cutoff-frequency f_T was 14GHz and f_{max} was 45GHz, the highest values yet reported for such structures.

© IEE 1998
3 March 1998
Electronics Letters Online No: 19980706
W.C.B. Peatman (Advanced Device Technologies, Inc., Charleston, WV 29403, USA)
R. Tsai (TRW Electronic Systems and Technology Division, Redondo Beach, CA 90278, USA)
R.M. Weikle II (Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22903, USA)
M. Shur (ECSE Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA)
E-mail: 75033.206@compuserve.com

References

Stacked quantum dot transistor and charge-induced confinement enhancement

L.J. Guo and S.Y. Chou

A new quantum dot transistor that has a polysilicon dot floating gate stacked on top of a silicon quantum dot channel has been fabricated. It is observed that charging of the floating gate not only shifts the threshold voltage of the quantum dot transistor, but also significantly increases the peak-to-valley ratio and peak separation in the conductance oscillations.

As the size of a transistor continuously scales down, single electron effects become important [1-3]. Previously, we have studied charge transport in single-electron quantum dot transistors which have a channel consisting of a silicon dot separated from the source and drain by two constrictions [4], and in single-electron MOS memories that have a polysilicon dot floating gate stacked on a straight channel [5]. In this Letter, we propose and demonstrate a novel stacked quantum dot transistor (QDT) that has a polysilicon dot floating gate stacked on top of a silicon dot channel, and report how transport through the silicon dot channel can be affected by the charges stored in the floating dot gate. We have observed that the peak-to-valley ratio and the peak separation of the conductance were enhanced after charging the electrons into the floating gate. This effect is explained as a result of the enhanced charge confinement in the silicon quantum dot channel.

Fig. 1 Schematic diagram of stacked quantum dot transistor fabricated on SOI wafer

Fig. 2 Conductance oscillations of stacked QDT taken at 4.2K before floating gate was charged with electrons

A schematic diagram of the device structure is shown in Fig. 1. It has a silicon quantum dot channel similar to that which we have demonstrated previously [4], and a polysilicon dot stacked on top of the Si dot channel as a floating gate. The device was fabricated on a silicon-on-insulator (SOI) wafer, with a boron doping of 3×10^{16}cm$^{-3}$ in the 35nm thick silicon layer. The first step of the fabrication process was the growth of 10nm thick chemical-vapour-deposited (CVD) polysilicon on the SOI wafer, with a layer of ~1nm thick native oxide sandwiched inbetween. The silicon dot channel and the polysilicon floating gate were defined using electron beam lithography, and were etched in a self-aligned manner using chlorine reactive ion etching. Next, the sample was oxidised, which partially consumed the silicon in the channel and the polysilicon in the floating gate, leaving the Si dot with a diameter of ~40nm and the polysilicon film with a thickness of ~5nm. Next, a CVD oxide was deposited to give a total control oxide thickness of 36nm. The rest of the process is similar to our earlier work on silicon quantum dot transistors.

The conductance against gate voltage characteristics taken at 4.2K (Figs. 2 and 3) shows the Coulomb blockade oscillations [5] of a stacked QDT before and after the floating gate was charged with electrons. It can be seen that after charging, not only had the threshold voltage of the transistor shifted (~0.3V), but the oscillation peaks were also enhanced and more well separated. Since the peak width is primarily due to thermal broadening, the full width at half maximum (FWHM) of the peak in terms of gate voltage can be related to temperature T as $\Delta V_{FWHM} = 3.5k_B T/\alpha$, where k_B is the Boltzman constant, and α is a scaling factor that converts the gate voltage (V_g) to the energy (E): $\alpha = e\Delta V_{FWHM}$. Using α, we found that the typical energy level separation (ΔE) had increased from 2.5 to 5.3meV after charging - an increase by a factor of two. Furthermore, the charge can be held in the floating gate for many days.
Further evidence of the increase in energy spacing in the dot channel is the decrease in valley current (I_v) when more electrons are charged into the floating gate, as shown in Fig. 4, where the valley positions are indicated for three different charge densities on the floating dot gate. Since $I_v \propto \exp(-\Delta E / kT)$, the reduction in the valley current implies the increase in energy level separation.

Acknowledgments: This work was partially supported by ONR, DARPA and ARO.

© IEE 1998

References

Surface recombination related frequency dispersion of current gain in AlGaAs/GaAs HBs

B. Ihn, J. Lee, T.M. Roh, Y.S. Kim and B. Kim

The dispersion effect of current gain related to surface recombination in AlGaAs/GaAs HBs has been studied. For an HBT with an emitter area of $3 \times 20 \mu m^2$, the surface recombination current to total base current ratio is 0.47×10^{-4} at < 100 MHz, and the ratio is decreased to zero at frequencies between 100 MHz and 3 GHz, clearly indicating that the current gain is dispersive.

Introduction: AlGaAs/GaAs heterojunction bipolar transistors (HBs) are applicable for high speed digital and microwaves circuits. In order to obtain the required high f_t and f_{max}, emitter size reduction is essential. As the emitter size decreases, surface recombination at the emitter periphery increases and current gain also decreases. Many studies have attempted to characterise the base surface recombination current effect [1, 2]. However, few reports are available on the frequency-dependence of this current component. In fact, the frequency dispersion of output resistance (R_o) and transconductance (g_m) of GaAs MESFETs have been investigated by many authors, and these phenomena are explained by surface-states [3, 4]. In this work, we report that HBs also have current gain dispersion which is related to surface recombination.

Device structures and measurements: The MOVCVD-grown epi-layer structure has a 700 Å thick, 30% Al mole fraction emitter layer and 1000 Å thick carbon-doped base layer. The emitter, base, and collector dopant concentrations are 2×10^{19}, 2×10^{18}, and 2×10^{20} cm$^{-3}$, respectively. Several different sized HBs are fabricated by a conventional MFSA-type self-aligned base metal HBT process without adopting any surface passivation. Devices with four different emitter sizes were measured, 4×30, 4×10, 3×30, and 3×10.