The fabrication of periodic metal nanodot arrays through pulsed laser melting induced fragmentation of metal nanogratings

Qiangfei Xia and Stephen Y Chou

Nanostructure Laboratory, Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
E-mail: chou@princeton.edu

Received 16 March 2009, in final form 29 April 2009
Published 23 June 2009
Online at stacks.iop.org/Nano/20/285310

Abstract

We propose and demonstrate a new method for fabricating periodic arrays of metal nanodots over a large area. In this method, metal nanogratings were first patterned on a substrate by nanoimprint lithography and lift-off, and were then melted using a single excimer laser pulse. We found that the laser melting broke the metal nanogratings into periodic nanodots. Furthermore, we demonstrated the control of the nanodot array pitch using a substrate surface topology, and the fabrication of two-dimensional periodic metal nanodot arrays of 70 nm diameter and 200 nm period. The fragmentation of lines into dots was attributed to the Rayleigh instability in a liquid cylinder.

(Some figures in this article are in colour only in the electronic version)

Metal nanodots have wide applications in catalysis [1], environmental remediation [2], DNA detection [3], high density data storage [4], and electronic and optical devices [5, 6]. In certain applications, periodic 1D or 2D arrays of nanodots are required. The common methods used today for fabricating metal nanodot arrays are either self-assembly based wet chemical processes or lithography based nanopatterning. The self-assembly methods include drop-casting [4] and spin-coating [7] of nanodot colloidal solutions on a substrate followed by solvent evaporation; self-assembly using a Langmuir–Blodgett technique [8]; templated self-assembly from nanodot colloids using templates such as biomolecules [9, 10]; and template-free self-assembly methods such as oriented aggregation [11], to name a few. Templated self-assembly offers nanometer precision and high throughput, but the nanoparticles have to be biocompatible or water soluble. In some cases, an additional step of a high-temperature thermal annealing is required to improve the adhesion between the particles and the substrate [4], which not only further increases the cost, but also is incompatible with substrates like plastics that cannot withstand high temperatures. On the other hand, lithography tools such as electron beam lithography (EBL) [12] and focus ion beam [13] allow well defined and well positioned nanodots, but they are limited by low throughput and small areas.

In this paper, we propose and demonstrate a simple method that has a great potential to manufacture periodic metal nanodot arrays over large areas with low costs. Our method, termed melting induced fragmentation (MIF), starts with patterning of metal gratings by nanoimprint lithography (NIL) and a metal lift-off [14, 15]. The metal nanogratings are then fragmented into arrays of round and periodic metal nanodots by a single laser pulse melting, favoring the minimum surface energy [16, 17]. Previously, a laser melting was used to change the shape of metal islands on a quartz substrate into spherical nanodots [18–21]. However, in those cases there was no patterning on the metal thin films and usually multiple laser pulses were used for their processes.

To fabricate the metal nanogratings used in MIF, NIL was first carried out to define a nanograting pattern in a resist on a substrate. After removing the residual resist layer by reactive ion etching (RIE), a metal thin film was deposited...
Figure 1. Au nanodots formed by fragmentation of a blank thin film (left column) and a 200 nm pitch, 100 nm line width grating (right column) on fused silica substrates. (a) SEM image of nanodots from a continuous film; (b) histogram of the particle size distribution for (a), the size is 106.6 ± 55.8 nm; (c) FFT image for (a), showing no regular periodicity for the particles in (a); (d) SEM image of nanodots from Au lines; (e) histogram of the particle size distribution for (d), the size is 65.2 ± 10.4 nm; (f) FFT image for (d), showing a periodicity of 220 ± 70 nm along the original grating line direction and the original 200 ± 9 nm grating period in the orthogonal direction. In both cases the films are 10 nm thick (with 2 nm Ti adhesion layer), and the laser fluences are 194 mJ cm$^{-2}$. Insets in (a) and (d) are schematics of the starting structures (blank thin film and nanogratings) on substrates.

To fragment the metal grating into nanodots, a single XeCl laser pulse (308 nm wavelength, 20 ns pulse width, 3×3 mm2 spot size) was used to melt the gratings. To characterize the metal nanodots fabricated, we took scanning electron microscope (SEM) images first, then analyzed them using a commercial image analysis software (Image Pro-Plus) [22] to gain the size and spacing distribution information of the nanodots.

Our experiments showed that on a flat surface of a substrate the nanodot arrays fabricated by MIF of metal nanogratings had far more uniform size distribution and periodicity than those from a blank thin film. For instance, a single laser pulse (194 mJ cm$^{-2}$) melting of the 10 nm Au/2 nm Ti blank film on fused silica broke the film into particles with an average diameter of 106.6 ± 55.8 nm and a broad distribution of period (figures 1(a)–(c)). However, with the same laser fluence, the diameter of the nanodots formed from the 200 nm pitch gratings (10 nm Au/2 nm Ti on fused silica) was 65.2 ± 10.4 nm, with a period of 220 ± 70 nm along the original grating line direction and a period of 200 ± 9 nm (the same as the original grating period) in the orthogonal direction (figures 1(d)–(f)). The relative standard variations (1 sigma) of the size and pitch distribution were significantly better than those of nanodots from a blank thin film. It is worth pointing out that previously we have shown that the final dot size is dependent on factors such as the film thickness, the linewidth, etc [16, 23].

To improve the nanodot periodicity in the original grating direction, we further propose to use pre-patterned substrates.
respectively (figure 3(d)). Compared with the nanodot arrays
the metal line direction was 200
analysis showed the periodicity of nanodots in the original
substrates (figures 3(a) and (c)). A closer examination on
periodic arrays of metal nanodots were formed on the
substrates (figures 3(a) and (c)). A closer examination on
the resultant nanodots were sitting in the cross points of
the metal nanogratings. It has to be pointed out that in
figure 3, the permalloy has a more uniform periodicity than Au
in both directions. There are also some missing dots in the Au
nanodots array and some cloud in the FFT image (figures 3(a)
and (b)), this could be due to the migration of Au at molten
state because it has higher mobility.

The laser fragmentation process can be explained using
Rayleigh instability theory, which predicts that a liquid
cylinder of a radius R will become unstable and starts to break
into periodic droplets of a critical wavelength, λ_c [24]. If
it is perturbed along the cylinder longitudinal direction, the
critical wavelength can be calculated using $\lambda_c = 2\pi R$
and the maximum (equilibrium) wavelength is $\lambda_{\text{eq}} = 2\sqrt{2\pi R}$ [25].
With this model, first we can understand easily why a
nanograting on a substrate can lead to periodic nanodots of
uniform diameter while a blank thin film cannot. Second, we
find the pitch of the nanodots along the original grating lines
agrees with Rayleigh instability model. For example, 80 nm
wide Cr lines of 200 nm pitch broke into the dots with an
average period of about 250 nm along the original grating line
direction (picture not shown in this text). The ratio of the
nanodot pitch to the original grating line width is 3.12, which
is close to the predicted value (π), suggesting that Rayleigh
instability is the governing mechanism.

Although the pitch of nanodots depends heavily on the
original nanowire width according to Rayleigh instability
theory, they can be regulated using substrate surface
topography, as shown in figure 3. The final nanostructure will
be the determined by both the natural instability process and
the substrate surface topography. Take figure 3 for instance,
the pitch of the shallow trenches is 200 nm, smaller than the
maximum instability wavelength ($2\sqrt{2\pi R}$), as a result,
there was only one dot at each trench/grating intersection
point. And the pitch of the nanodots along the original grating
direction is determined by the original trench pitch. However,
if the pitch of the surface relief structure is larger than the
maximum wavelength $2\sqrt{2\pi R}$, one shall expect that there
will be multiple dots formed at one intersection point, depending
on the pitch and width of the trench as summarized in figure 4.
This is important because it suggests that complex nanodot
arrays can be formed by engineering the surface topography.

Moreover, the pulse laser melting induced fragmentation
of NIL defined metal nanogratings offers several advantages
over other methods. First, this method inherits the high-
throughput and low-cost nature of NIL. Second, with a single
laser pulse of 20 ns, the high processing speed of our technique
not only greatly reduces the processing time, but also offers
negligible thermal effect on the substrates, enabling it suitable
for different substrate materials including plastics. Third, the
laser spot is adjustable in a certain range and step and repeat
exposures can be achieved for wafer scale area. Fourth, the

For example, we pre-patterned the substrates with shallow
trenches (10 nm deep, 70 nm wide, and 200 nm pitch) using
NIL and RIE (figure 2(a)). The metal gratings were made
normal to the pre-patterned grating (figure 2(b)). Particularly,
we made samples as follows: (a) 10 nm Au/2 nm Ti gratings
of 200 nm pitch and 100 nm linewidth on a pre-patterned
fused silica wafer; and (b) 7 nm thick permalloy gratings of
200 nm pitch and 70 nm linewidth on a pre-patterned Si wafer
with 210 nm thick thermal oxide. During the fragmentation
process, the molten material tends to flow into the trench/wire
cross points to minimize the system energy. As a result, the
nanodots period along the original nanograting line direction
is determined by the period of the shallow trenches rather than
the natural MIF on a blank substrate (figure 2(c)).

The nanogratings on pre-patterned substrates were
exposed to single laser pulses with fluences of 325 mJ cm$^{-2}$
for Au and 790 mJ cm$^{-2}$ for permalloy, respectively. Again
periodic arrays of metal nanodots were formed on the
substrates (figures 3(a) and (c)). A closer examination on
the SEM images (insets, figures 3(a) and (c)) indicated that
the resultant nanodots were sitting in the cross points of
the original metal lines and the shallow trenches, favoring
minimum system energy. The fast Fourier transfer (FFT)
analysis showed the periodicity of nanodots in the original
metal line direction was 200.0 ± 11.3 nm and in the normal
direction was 200.0 ± 6.9 nm (figure 3(b)) for Au, and those
for permalloy were 200.0 ± 7.4 nm and 200.0 ± 5.8 nm,
respectively (figure 3(d)). Compared with the nanodot arrays
by fragmentation of a blank Au film (figures 1(a) and (c))
(which had no certain periodicity), and those by fragmentation
of Au nanogratings on a flat surface (figures 1(d) and (f))
(which had a pitch of 220 ± 70 nm in the original grating line
direction), the pitches of the nanodot arrays in figure 3 were
much more uniform because they were predetermined by the
pitches of the shallow trenches on the substrate surface and the
original metal nanogratings. It has to be pointed out that in
figure 3, the permalloy has a more uniform periodicity than Au
in both directions. There are also some missing dots in the Au
nanodots array and some cloud in the FFT image (figures 3(a)
and (b)), this could be due to the migration of Au at molten
state because it has higher mobility.

Although the period of nanodots depends heavily on the
original nanowire width according to Rayleigh instability
theory, they can be regulated using substrate surface
topography, as shown in figure 3. The final nanostructure will
be the determined by both the natural instability process and
the substrate surface topography. Take figure 3 for instance,
the pitch of the shallow trenches is 200 nm, smaller than the
maximum instability wavelength ($2\sqrt{2\pi R}$), as a result,
there was only one dot at each trench/grating intersection
point. And the pitch of the nanodots along the original grating
direction is determined by the original trench pitch. However,
if the pitch of the surface relief structure is larger than the
maximum wavelength $2\sqrt{2\pi R}$, one shall expect that there
will be multiple dots formed at one intersection point, depending
on the pitch and width of the trench as summarized in figure 4.
This is important because it suggests that complex nanodot
arrays can be formed by engineering the surface topography.

Moreover, the pulse laser melting induced fragmentation
of NIL defined metal nanogratings offers several advantages
over other methods. First, this method inherits the high-
throughput and low-cost nature of NIL. Second, with a single
laser pulse of 20 ns, the high processing speed of our technique
not only greatly reduces the processing time, but also offers
negligible thermal effect on the substrates, enabling it suitable
for different substrate materials including plastics. Third, the
laser spot is adjustable in a certain range and step and repeat
exposures can be achieved for wafer scale area. Fourth, the

Figure 2. Principle of periodicity engineering using surface
topography. (a) Patterning of shallow trenches on a substrate;
(b) metal lines are patterned and deposited with an angle (adjustable)
to the trench direction; (c) during the fragmentation process, the
molten material particle flows into the trenches and resolidifies at the
cross points of the trench and the metal lines due to a lower energy
on those sites, forming an array with regular pitch.

$\frac{\lambda}{\lambda^2} = \frac{R}{\sqrt{2\pi}}$, one shall expect that there will
be multiple dots formed at one intersection point, depending
on the pitch and width of the trench as summarized in figure 4.
This is important because it suggests that complex nanodot
arrays can be formed by engineering the surface topography.

Moreover, the pulse laser melting induced fragmentation
of NIL defined metal nanogratings offers several advantages
over other methods. First, this method inherits the high-
throughput and low-cost nature of NIL. Second, with a single
laser pulse of 20 ns, the high processing speed of our technique
not only greatly reduces the processing time, but also offers
negligible thermal effect on the substrates, enabling it suitable
for different substrate materials including plastics. Third, the
laser spot is adjustable in a certain range and step and repeat
exposures can be achieved for wafer scale area. Fourth, the

$\frac{\lambda}{\lambda^2} = \frac{R}{\sqrt{2\pi}}$, one shall expect that there will
be multiple dots formed at one intersection point, depending
on the pitch and width of the trench as summarized in figure 4.
This is important because it suggests that complex nanodot
arrays can be formed by engineering the surface topography.

Moreover, the pulse laser melting induced fragmentation
of NIL defined metal nanogratings offers several advantages
over other methods. First, this method inherits the high-
throughput and low-cost nature of NIL. Second, with a single
laser pulse of 20 ns, the high processing speed of our technique
not only greatly reduces the processing time, but also offers
negligible thermal effect on the substrates, enabling it suitable
for different substrate materials including plastics. Third, the
laser spot is adjustable in a certain range and step and repeat
exposures can be achieved for wafer scale area. Fourth, the
geometries of the shallow trenches, or the geometries of the particle material, can be tuned separately, offering flexibility in the design of nanodot patterns. Finally, other substrate surface engineering methods such as the wettability difference in the difference area on a substrate might also be utilized to regulate the periodicity.

In summary, we proposed and demonstrated a novel method to fabricate regular metal nanodot arrays by laser fragmentation of metal nanogratings. This approach not only improved the particle size distribution, but also introduced periodicity along the original grating direction according to Rayleigh instability. The periodicity of the nanodot arrays was further engineered using a surface relief structure, resulting in a regular 2D array of nanodots with regular periodicity along both directions. As a simple fabrication method, it could be extended to other metals and has wide applications in many areas such as magnetics, plasmonics, surface enhanced Raman scattering and other photonic devices.

Acknowledgments

This work is supported in part by the US Defense Advanced Research Program Agency (DARPA) and the Office of Naval Research (ONR).
References

[12] Hicks E M et al 2005 Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography Nano Lett. 5 1066–70
[16] Xia Q F and Chou S Y 2008 Fabrication of sub-25 nm diameter pillar nanoimprint molds with smooth sidewalls using self perfection by liquefaction (SPEL) and reactive ion etching Nanotechnology 19 455301
[22] Image Pro Plus http://www.mediacy.com