Supervoxel parcellation of visual cortex connectivity

Christopher Baldassano1, Diane M. Beck2, Li Fei-Fei1

1Department of Computer Science, Stanford University \quad 2Psychology Department and Beckman Institute, University of Illinois Urbana-Champaign

Summary

- How is the cortex functionally and structurally organized?
- New tool: High-resolution connectivity matrices
 - Functional measure: Resting-state connectivity
 - Anatomical measure: Diffusion tractography
- How similar are functional and anatomical connectivity?
 - Result: Similar at voxel-scale, but depends on cortical location
- What is the spatial structure of these connectivity matrices?
 - Explore using spatially-informed clustering
 - Result: Reveals retinotopic and functional organization

Previous Work

- Whole-brain comparisons of functional and anatomical connectivity are coarse, atlas-dependent1,2,3,4
- Greedy clustering algorithms give only approximate solutions5,6,7

Data: Human Connectome Project

- Resting-state fMRI - 40 subjects (2mm isotropic)
 - Connectivity = correlation between timecourses
- Diffusion Tractography - 10 subjects (1.25mm isotropic)
 - Sampled 33 billion tracts using FSL
 - Connectivity = log number of fibers between voxels

Voxel-level Multimodal Comparison

- No anatomical connectivity
- Strong anatomical connectivity

- Anatomical connectivity is consistently predictive of functional connectivity for individual voxel pairs ($r=0.25$)

Multimodal Comparisons Across Cortex

- Regions of both high and low consistency between functional and anatomical connectivity
- Functional and anatomical connectivity maps are very similar in LO ($r=0.57$), possibly corresponding to the Vertical Occipital Fasciculus
- Foveal V1 has similar functional and anatomical connectivity maps in occipital cortex, but tractography reveals additional connections to anterior regions ($r=0.42$)

Generative Clustering Model

- Produces spatially-contiguous “supervoxels”
- Refines clustering with multiple passes
- Uses data statistics to help set number of clusters

 1. Each voxel selects a neighbor to cluster with
 2. Latent connectivity between supervoxels
 3. Observed connectivity is noisy estimate of supervoxel connectivity

Supervoxel Clustering

- Functional clusters divide early visual areas into eccentricity rings, and separate dorsal regions V3A/B from lateral regions LO1/2 and ventral V3/V4
- The Parahippocampal Place Area (white outline) overlaps multiple functional and anatomical clusters, connected to different regions (posterior=red, anterior=blue)

Funding and References

- NSF GRFP (DGE-0645962), WU-Minn Hum. Conn. Proj. (1U54MH091657)