ACSL Contest

 TopicsDr. Baldassano
chrisb@princeton.edu
Yu's Elite Education

Next week

- Next week we are going to have two quizzes:
- First half: ACSL Programming Contest
- Second half: Final quiz for the class

Today: review ACSL topics and the class

ACSL

- ACSL = "American Computer Science League"
- Runs programming and computer science competitions each year
- Yu's is starting to compete next week - you will be the first competitors!
- Let's review some things that will be on the ACSL contest:

What does this program do?

- You'll be given a program with a bunch of if statements
- You will have to keep track of all the variables and what gets printed out at the end
- Symbols to know:
- Relational operators: <, >, <=, >=, ==, <>
- Logical operators: and, or
- Math operators: +, -, *, /, ^
- Functions: int() and print()
- GOTO

Program example

$a=4: b=1: c=3: d=1: e=0$
if $(a>=e)$ or $(d<b)$ then $a=e$ else $b=d$
if $a>=b$ then $a=a+b$ else $a=a-b$
if ($b>=c$) and ($d<=e$) then $c=b-c$ else $d=a-e$
if $b^{\wedge} d=2$ then $d=d+1$ else $b=b+1$
if $\operatorname{int}(a / c)=a / c$ then $a=a / c$ else $a=a-c$
if a * $e=c$ * d then $a=a+d$ else $c=c+e$
print b + a *e / d-c* (a ^a)

Binary numbers

- What are binary numbers?
- How can we convert to and from decimal numbers?

Binary numbers

Octal and hexidecimal

- What are octal and hexidecimal numbers?
- How can we convert between oct/hex and decimal?
- How can we convert between binary and oct/hex?

Octal and hexidecimal

Adding binary numbers

Multiplying by powers of 2

Number systems example

- Convert BED from hexidecimal to octal

Number systems example

Solve for X_{2}

$$
\mathrm{X}_{2}=\mathrm{A} 12_{16}-567_{8}
$$

Functions

- What is a (math) function?
- Takes a number as input, gives a number as output
- Might do different things to different numbers

Recursive Functions

- Recursive function: Defined in terms of itself!

$$
f(x)= \begin{cases}f(x-2)+2 & \text { if } x>2 \\ x+2 & \text { otherwise }\end{cases}
$$

Recursive example

$\Rightarrow f(x)=\{f(x-20)+10$
\{3x
if $x>100$
if $x<=100$

- $\mathrm{f}(150)=$

Recursive example

$$
\begin{array}{ll}
\qquad \mathrm{f}(\mathrm{x})=\begin{array}{ll}
\{\mathrm{f}(\mathrm{x}+4)+2 & \text { if } \mathrm{x}<10 \\
\{\mathrm{x}-8 & \text { else }
\end{array} \\
& \mathrm{f}(\mathrm{f}(5))=
\end{array}
$$

Practice quiz

Class review

- What is an algorithm? What is a data structure?
- What makes algorithms / data structures good or bad?

Class review

- Representing a set of numbers
- Heaps:
- What operations does it support? Big 0 ?
- How do we maintain a heap?

Class review

- Representing a set of numbers
- Binary search tree
- What operations does it support? Big O?
- How do we maintain a binary search tree?

Class review

- Representing a set of numbers
- Linked list
- What operations does it support? Big 0 ?
- How do we maintain a linked list?

Class review

- Representing key->value pairs (associative array)
- Hash table
- What operations does it support? Big O?
- What makes a good hash function?
- What happens when hash function is good? Bad?

Class review

- Sorting
- What are the most common sorting algorithms? Big 0?
- What about memory consumption and search stability?
- Is it possible to beat the $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ bound?

Class review

- Dynamic programming
- What is the key property of a problem that allows for a dynamic programming solution?
- What are some examples of dynamic programming?

Class review

- Machine learning
- When do we use machine learning?
- What is unsupervised machine learning?
- What is supervised machine learning?
- What are decision trees?
- What is regression?

Class review

- Graph algorithms
- What is a graph and why is it useful? Types?
- Finding shortest path: Dijkstra's algorithm
- Adding a heuristic: A^{*}
- Node importance: Pagerank
- Strongly connected components: Tarjan
- Minimum spanning tree: Prim's

Class review

- Game playing
- Adversarial search
- Minimax algorithm
- How can we speed up minimax but still get exact solution?
- How can we get an approximate solution?

Class review

- Procedural generation
- What is the goal of procedural generation algorithms?
- What is a Markov chain?
- What is an L-system?

