Loops

Dr. Baldassano

chrisb@princeton.edu
Yu's Elite Education

Last week recap

- if - elif - else
- Relational operators (<, <=, ==, ...)
- Logical operators (not, and, or)
- Blackjack problem

Loops

- Often want to repeat the same sequence of actions many times
- Could write a function and call it lots of times:

```
ComputeCardValue(card1)
ComputeCardValue(card2)
ComputeCardValue(card3)
```

- But what if there are many cards? Or a variable number of cards?

"While loops"

Figure 4-1 The logic of a while loop

The while Loop: a Condition-Controlled Loop

- while loop: while condition is true, do something
- Condition tested for true or false value
- Statements repeated as long as condition is true
> General format:

```
while condition:
statements
```


While loop example

while (x > 0):
print(x)

$$
x=x-1
$$

print('Blastoff!')

While loop details

- The condition has the same format as the "if" statement (can use logical operators)
- The condition is tested at the beginning of each iteration of the loop
- So if the condition is false when we reach the while loop, the loop will never be run at all
- Something must happen within the loop that will cause the condition to change

Quiz Q1

- What will this code print out?

$$
\begin{aligned}
& x=10 \\
& \text { while }(x<5): \\
& \quad \text { print }(x) \\
& \quad x=x+1
\end{aligned}
$$

Quiz Q2

- What will this code print out?

$$
\begin{aligned}
& x=3 \\
& y=0 \\
& \text { while }(x<5): \\
& \text { print }(x) \\
& \qquad y=y+1
\end{aligned}
$$

Quiz Q3

- What will this code print out?

$$
\begin{aligned}
& x=2 \\
& \text { while }(x<5): \\
& \text { print }(x) \\
& x=2 \star_{x}
\end{aligned}
$$

Reading repeated inputs

- Can use while loops to read multiple inputs

```
sum = 0
```

current_input = input('Number: ')
while current_input $!=$ 'done':
sum $=$ sum + int(current_input)
current_input = input('Number: ')
print('Sum $=$ ', sum)

Combining with if statements

$$
\begin{aligned}
& \mathrm{x}=-3 \\
& \text { while } \mathrm{x}<5: \\
& \text { if }(\mathrm{x}<0): \\
& \text { print('Negative') } \\
& \text { elif }(\mathrm{x}==0): \\
& \text { print('Zero') } \\
& \text { else: } \\
& \text { print('Positive') } \\
& \mathrm{x}=\mathrm{x}+1
\end{aligned}
$$

IDLE practice

- Compute n factorial (n !)
- Draw turtle rings
- Draw turtle spiral
- Print factors of number
- Compute blackjack for any number of aces

Common loop pattern

- Very often we want to loop through a range of numbers:

$$
\begin{aligned}
& x=1 \\
& \text { while }(x<10): \\
& \text { print }(x) \\
& x=x+1
\end{aligned}
$$

The for loop

```
for x in range(1, 11):
print(x)
```

- for [variable] in range([start], [stop]):
- Last number in loop is ONE LESS than stop
- This will be useful for lists next week
- How to use this to compute factorial?

Range step argument

- Can also give a third "step" argument to range for x in range (1,11,3):

```
print(x)
```

- Negative step can count backwards
for x in range ($10,0,-3$):
print(x)

Augmented Assignment

- We keep writing things like $x=x+2$
- Can use "augmented assignment" as an abbreviation: $x+=2$

Table 4-2 Augmented assignment operators

Operator	Example Usage	Equivalent To
$+=$	$\mathrm{x}+=5$	$\mathrm{x}=\mathrm{x}+5$
$-=$	$\mathrm{y}-=2$	$\mathrm{y}=\mathrm{y}-2$
$*=$	$\mathrm{z} *=10$	$\mathrm{z}=\mathrm{z} * 10$
$/=$	$\mathrm{a} /=\mathrm{b}$	$\mathrm{a}=\mathrm{a} / \mathrm{b}$
$\%=$	$\mathrm{c} \%=3$	$\mathrm{c}=\mathrm{c} \% 3$

Nested loops

- Can put loops inside loops

```
for n in range(1,10):
    factorial = 1
```

 for \(x\) in range(1,n+1):
 factorial \(*=x\)
 print(n,'factorial=',factorial)

IDLE practice

- Turtle grid of circles
- Prime factorization

Assignment: Collatz Conjecture

- Write a function that takes an integer as an argument
- Repeat:
- If the number is even, divide by 2
- If the number is odd, multiply by 3 and add 1
- If you reach 1 then stop
- Print out the sequence of numbers
- Does it always stop? This is an unsolved problem in mathematics called the Collatz Conjecture

