Networks

Networks are based on electronic circuit, whose name derives from the latin word for a circle or loop. As you probably already know, the simplest form of circuit consists of a generator, line and resistor, such as a battery, wire and lightbulb. The schematic representation of this is as follows:

OHM's LAW

All components of a circuit are described by a simple principle known as Ohm's Law. It simply states that voltage across a resistor equals the current through it times a quantity known as resistance.

$$
\mathbf{V}=\mathbf{I R}
$$

Voltage is measured in volts (V), current in amps (A) and resistance in ohms (Ω). (These units are named after the scientists Volta, Ampere and Ohm)

KIRCHOFF'S LAW

Voltage:
The total voltage in a circuit must add up to zero. This means that voltage at the source must be equal to the total voltage drop across the resistors in a circuit. Ohm's law (V=IR) also governs the magnitude of the voltage drop across each resistive element in a circuit. (note: short wires also have a resistance, however, this is insignificant compared to the R of a resistor - we will address long wires later)

Current:

The sum of the currents flowing to any one point in a circuit, known as a node, must be zero.

This means that if I_{1} is +1 amp , and I_{2} is +2 amps then I_{3} must be -3 amps (in other words, I_{3} is 3 amps flowing away from the node)

Determining Resistance

If you have more than one resistor in a circuit, they can be combined into a single equivalent resistance, R_{T}. The method for combining depends on whether resistors are in series or in parallel.

If resistors are in series:

Current, I , is the same through each resistor, and equal to: $\mathrm{I}=\mathrm{V}_{\text {Source }} / \mathrm{R}_{\text {Total }}$

If resistors are wired in parallel:

$$
1 / \mathrm{R}_{\text {Total }}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}
$$

Voltage, V , is the same across each resistor and equal to V_{S}.

If you have a combination, convert the parallel portion of the circuit to one resistance, and then add the resistors as if they were in series.

EXAMPLE

$\mathrm{V}_{\text {Source }}=12 \mathrm{~V}$
$\mathrm{R}_{1}=1000 \Omega \quad \mathrm{R}_{2}=400 \Omega \quad \mathrm{R}_{3}=400 \Omega$

First convert R_{2} and R_{3} to a single resistance, $\mathrm{R}_{\text {parallel }}$.

$1 / R_{\text {parallel }}=1 / R_{2}+1 / R_{3}$
$1 / \mathrm{R}_{\text {parallel }}=1 / 400 \Omega+1 / 400 \Omega$
$1 / R_{\text {parallel }}=2 / 400 \Omega$
$\mathrm{R}_{\text {parallel }}=200 \Omega$
Now add R_{1} and $\mathrm{R}_{\text {parallel }}$.
$\mathrm{R}_{1}+\mathrm{R}_{\text {parallel }}=\mathrm{R}_{\text {Total }}$
$1000 \Omega+200 \Omega=1200 \Omega$

Use $\mathrm{R}_{\text {Total }}$ to determine the current through the loop:

$$
\begin{aligned}
& \mathrm{V}_{\text {Source }}=\mathrm{I}_{\text {Total }} \mathrm{R}_{\text {Total }} \\
& 12 \mathrm{~V}=\mathrm{I}_{\text {Total }} \times 1200 \Omega \\
& \mathrm{I}_{\text {Total }}=.01 \mathrm{~A}
\end{aligned}
$$

Because R_{1} and $R_{\text {parallel }}$ were in series, this is the current that passes through each of them. To find the voltage through each resistor, use Ohm's Law:
$\mathrm{V}_{1}=\mathrm{I}_{\text {Total }} \mathrm{R}_{1}$
$\mathrm{V}_{1}=.01 \mathrm{~A} \times 1000 \Omega$
$\mathrm{V}_{1}=10 \mathrm{~V}$
$\mathrm{V}_{\text {parallel }}=\mathrm{I}_{\text {Total }} \mathrm{R}_{\text {parallel }}$
$\mathrm{V}_{\text {parallel }}=.01 \mathrm{~A} \times 200 \Omega$
$\mathrm{V}_{\text {parallel }}=2 \mathrm{~V}$
notice that the voltage drops add up to 12 V
$=\mathrm{V}_{\text {Source }}$.
To find the current through and voltage across R_{2} and R_{3} you must use what you know about the voltage, $\mathrm{V}_{\text {parallel }}$, across the two of them. Because they are wired in parallel, the voltage across each of them is the same. It is also equal to $\mathrm{V}_{\text {parallel. }}$.
$\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{\text {parallel }}$
$\mathrm{V}_{2}=2 \mathrm{~V}$
$\mathrm{V}_{3}=2 \mathrm{~V}$

To find the current through each, again use Ohm's law:
$\mathrm{V}_{2}=\mathrm{I}_{2} \mathrm{R}_{2}$
$2 \mathrm{~V}=\mathrm{I}_{2} \times 400 \Omega$
$\mathrm{I}_{2}=.005 \mathrm{~A}$
$\mathrm{V}_{3}=\mathrm{I}_{3} \mathrm{R}_{3}$
$2 \mathrm{~V}=\mathrm{I}_{3} \times 400 \Omega$
$\mathrm{I}_{3}=.005 \mathrm{~A}$

Resistance of a device can be a function of different properties, such as temperature. In a wire resistance is dependent upon the material used, the length of the wire, and its crosssectional area:

Resistance $=$ resistivity of the material \times length of wire / cross-sectional area of the wire

$$
\mathbf{R}=\rho \mathbf{L} / \mathbf{A}
$$

Joule's Law

Another important equation relating to all circuits is Joule's Law. It states:

Power in a component (measured in watts) $=$ Current through it times the voltage across it

$$
\mathbf{P}=\mathbf{V I}
$$

And, knowing that $\mathbf{V}=\mathbf{I R}$, we can substitute to create another relationship:

$$
\begin{gathered}
\mathrm{P}=\mathrm{I} \times(\mathrm{IR}) \\
\mathbf{P}=\mathbf{I}^{2} \mathbf{R}
\end{gathered}
$$

From this, one is able to determine power losses due to resistance at different current levels.

Thomas Edison worked with these equations to help him develop his vision of a great New York network of electricity.

Electromagnetism

Faraday observed that when current flows through a wire that is in a magnetic field, this wire experiences a force in a direction perpendicular to both the magnetic field and the current flow. The magnitude of the force on this wire is:

$$
F=i L B
$$

Where F is the force on the wire, i is the current running through the wire, L is the length of wire that is in the magnetic field, and B is the magnetic field strength.

This observation serves as the fundamental basis for many electromagnetic devices including motors, loudspeakers and electromagnetic meters.

