
Networks for Electric Lighting

Ohm's law (1)

$$box{V}{
m voltage} = egin{array}{cccc} I & R & & & & & & \\
m current & & resistance & & & & \\
m at the & & flowing & of the & & & \\
m generator & in the & & lamp & & \\
m circuit & & & & \\
m volts & & amps & ohms & & \\ \hline \end{array}$$

Joule's law (2)

P	=	V	I
power		voltage	current
from		atthe	flowing
the		generator	in the
generator			circuit
watts		volts	amps

Substitute (1) into (2)

$$I^2$$
 R = P
current resistance squared of the lamp to light

Note: Formulas for this simplified network neglect the power losses in the lines.

Current in One Coil

Ohm's law,
$$V = IR$$
 Resistance $R = \rho \frac{L}{A}$

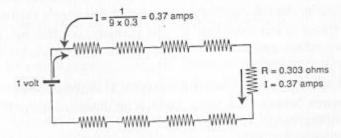
V = The voltage produced by the battery which we assume, for Henry's experiment 15, to have been 1 volt.

 $R = The \ resistance$ throughout each of the 9 circuits of length L.

L = 60 ft., the length for one wire going from the battery to the magnet, coiled around the iron core, and returning to the battery (one circuit).

A = 0.00159 sq. in. the *cross-sectional* area of the .045-in. diameter copper wire.

 ρ = The *resistivity* of the wire material, which for copper is 0.67×10^{-6} ohm-in.


Hence, the resistance in each of the 9 parallel circuits is

$$R = 0.67 \times 10^{-6} \frac{60 \times 12}{1590 \times 10^{-6}} = 0.303 \text{ ohms}$$

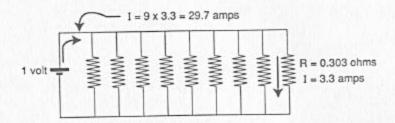
and, from Ohm's law, we calculate the current as

$$I = \frac{V}{R} = \frac{1}{0.303} = 3.3$$
 amps in each of 9 parallel circuits.

Series Circuit for 9 Coils

$$I = \frac{V}{R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9} = \frac{1}{9 \times 0.303} = 0.37 \text{ amps}$$

$$\frac{IN}{L_C} = \frac{0.37(9 \times 80)}{23} = \frac{266}{23} = 11.6 \frac{\text{ampere-turns}}{\text{in.}}; \quad B \approx 30,000 \frac{\text{lines of flux}^*}{\text{sq. in.}}$$

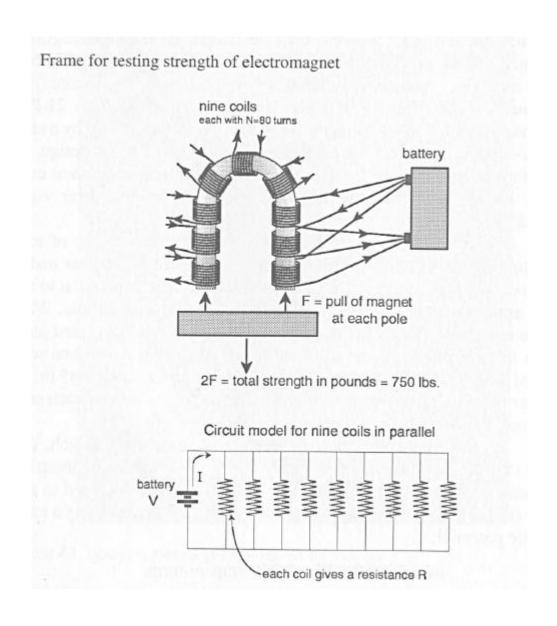

$$2F = \frac{2(30,000)^2}{2} = 100 \text{ lbs.}$$

 $2F = \frac{2(30,000)^2}{7,213 \times 10^7} = 100 \text{ lbs.}$

Henry got over seven times the strength by using a parallel instead of a series circuit for his electromagnet.

*Note that B is not linearly proportional to $\frac{IN}{I_{\odot}}$.

Parallel Circuit for 9 Coils



$$I = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3} + \frac{V}{R_4} + \frac{V}{R_5} + \frac{V}{R_6} + \frac{V}{R_7} + \frac{V}{R_8} + \frac{V}{R_9} = 9 \times \frac{1}{0.303} = 29.7 \text{ amps}$$

$$\frac{IN}{L_C} = \frac{(3.3)(720)}{23} = 103 \frac{\text{ampere-turns}}{\text{in.}} \quad B \approx 82,000 \frac{\text{lines of flux}}{\text{sq. in.}}$$

$$2F = \frac{2(82,000)^2}{7.213 \times 10^7} = 746 \text{ lbs.}$$

Joseph Henry's Magnet

Magnet Strength

The strength of the electromagnet, F, depends upon the flux density B and the pole area A.

$$F = \frac{B^2 A}{72,130,000}$$
 lbs.

The flux density B depends upon the number of turns of wire $(N=9\times80=720\,\mathrm{turns})$ coiled around a core of length $L_C=23\,\mathrm{in.}$, the current flowing through the wires $(I=3.3\,\mathrm{ampsineachturn})$ and the material properties of the core:

$$\frac{IN}{L_C} = \frac{3.3(720)}{23} = 103$$
 ampere-turns per in.

The flux density varies with the quantity IN/L_C as well as with the materials; it must be taken from experimentally derived magnetization curves. For the soft iron used by Henry, we can estimate, taking standard curves for iron and steel with $IN/L_C = 103$,

$$B = 82,000$$
 lines of flux per sq. in.*

The pole area A is the cross-sectioned area of one end of the horseshoe core or $2 \times 2 = 4$ sq. in. Therefore, the total strength of both poles

$$2F = \frac{2(82,000)^2(4)}{7.213 \times 10^7} = 746 \text{ lbs.}$$

is about what Henry measured.

*For such curves see, for example A. L. Cook and C. C. Carr, *Elements of Electri*cal Engineering, 5th ed., New York, 1947, p. 30. We have interpolated and picked the value that gives Henry's result.