Joint Source-Channel Secrecy Using Hybrid Coding

Eva Song, Paul Cuff, and H. Vincent Poor

Department of Electrical Engineering
Princeton University

June 19, 2015
A source-channel coding setting

Encoder f_n \rightarrow X^n \rightarrow P_{YZ|X}$

Decoder g_n

Eve

$t = 1, \ldots, n$

Why causal disclosure?

▶ Stronger formulation: to the favor of eavesdropper

▶ Can generalize equivocation

Song, Cuff, Poor (Princeton University)
A source-channel coding setting

Quality of reconstruction: $d(S^n, \hat{S}^n), d(S^n, \check{S}^n)$
A source-channel coding setting

- Quality of reconstruction: $d(S^n, \hat{S}^n)$, $d(S^n, \check{S}^n)$
- Why causal disclosure?
 - Stronger formulation: to the favor of eavesdropper
 - Can generalize equivocation
In this talk...
In this talk...

- Design source-channel coding schemes for \((D_b, D_e)\) s.t.
 - \(\mathbb{E} \left[d(S^n, \hat{S}^n) \right] \leq n \, D_b\)
 - \(\min_{\{p_{\xi_t | Z^n S^{t-1}}\}_{t=1}^n} \mathbb{E}[d(S^n, \hat{S}^n)] \geq n \, D_e\)

Analysis uses The Likelihood Encoder
- Total variation distance
- Soft-covering lemma
In this talk...

- Design source-channel coding schemes for \((D_b, D_e)\) s.t.
 - \(\mathbb{E}\left[d(S^n, \hat{S}^n)\right] \leq n D_b\)
 - \(\min \{p_{\xi_t|Z^nS_t^{-1}}\}_{t=1}^n \mathbb{E}[d(S^n, \hat{S}^n)] \geq n D_e\)

- Analysis uses The Likelihood Encoder
 - Total variation distance
 - Soft-covering lemma
What is a likelihood encoder?

- a stochastic source encoder: \(f_n : \mathcal{X}^n \rightarrow \mathcal{M} \)

Given a codebook \(\{ y_n(m) \} \), \(m, m' \in \{1 : 2^n R \} \), a joint distribution \(P_{XY} \), the likelihood function for each codeword:

\[
L(m | x_n) \triangleq P_{X|Y}(x_n | y_n(m)) = \prod P_{X|Y}(x_n | y_n(m))
\]

the likelihood encoder determines the message index according to:

\[
P_M(X_n | m | x_n) = \frac{L(m | x_n)}{\sum_{m' \in \{1 : 2^n R \}} L(m' | x_n)} \propto L(m | x_n).
\]
What is a likelihood encoder?

- a stochastic source encoder: \(f_n : \mathcal{X}^n \mapsto \mathcal{M} \)

\[
\begin{array}{cccc}
\hat{X}_n & \xrightarrow{Encoder \ f_n} & M & \xrightarrow{Decoder \ g_n} \hat{Y}_n \\
\end{array}
\]

Given

- a codebook \(\{ y^n(m) \}_m, \ m \in [1 : 2^{nR}] \)
- a joint distribution \(P_{XY} \)

the likelihood function for each codeword:

\[
L(m|x^n) \triangleq P_{X^n|Y^n}(x^n|y^n(m)) = \prod P_{X|Y}(x^n|y^n(m))
\]

the likelihood encoder determines the message index according to:

\[
P_{M|X^n}(m|x^n) = \frac{L(m|x^n)}{\sum_{m' \in [1:2^{nR}]} L(m'|x^n)} \propto L(m|x^n).
\]
Warm up – soft-covering lemma

Lemma

Given

1) P_{uxz}

2) random $C^{(n)}$ of sequences $U^n(m) \sim \prod_{t=1}^{n} P_U(u_t)$, $m \in [1 : 2^{nR}]$
Warm up – soft-covering lemma

Lemma

- **Given**
 1) \(\overline{P}_{UXZ} \)
 2) random \(C^{(n)} \) of sequences \(U^n(m) \sim \prod_{t=1}^{n} \overline{P}_U(u_t) \), \(m \in [1 : 2^{nR}] \)

- **Let**
 \[
 P_{MX^nZ^k}(m, x^n, z^k) \triangleq \frac{1}{2^{nR}} \prod_{t=1}^{n} \overline{P}_{X|U}(x_t|U_t(m)) \prod_{t=1}^{k} \overline{P}_{Z|XU}(z_t|x_t, U_t(m))
 \]

 \[
 \overline{P}_{X^nZ^k} \triangleq \prod_{t=1}^{n} \overline{P}_X(x_t) \prod_{t=1}^{k} \overline{P}_{Z|X}(z_t|x_t)
 \]
Warm up – soft-covering lemma

Lemma

- **Given**
 1) \overline{P}_{UXZ}
 2) random $C^{(n)}$ of sequences $U^n(m) \sim \prod_{t=1}^{n} \overline{P}_U(u_t), \ m \in [1 : 2^{nR}]$

- **Let**

 $$P_{MX^nZ^k}(m, x^n, z^k) \triangleq \frac{1}{2nR} \prod_{t=1}^{n} \overline{P}_X(x_t | U_t(m)) \prod_{t=1}^{k} \overline{P}_Z|XU(z_t | x_t, U_t(m))$$

 $$\overline{P}_{X^nZ^k} \triangleq \prod_{t=1}^{n} \overline{P}_X(x_t) \prod_{t=1}^{k} \overline{P}_Z|X(z_t | x_t)$$

- If $R > I(X; U)$, then

 $$\mathbb{E}_{C^n} \left[\| P_{X^nZ^k} - \overline{P}_{X^nZ^k} \|_{TV} \right] \leq \exp(-\gamma n) \to_n 0,$$

 for any $\beta < \frac{R - I(X; U)}{I(Z; U | X)}$, $k \leq \beta n$, $\gamma > 0$ depending on this gap.
Problem setup

- i.i.d. source \(S^n \sim \prod_{t=1}^n P_S(s_t) \)
- memoryless broadcast channel \(\prod_{t=1}^n P_{YZ|X}(y_t, z_t|x_t) \)
- Encoder \(f_n : S^n \mapsto X^n \) (possibly stochastic)
- Legitimate receiver decoder \(g_n : Y^n \mapsto \hat{S}^n \) (possibly stochastic)
- Eavesdropper decoders \(\{ P_{\hat{S}_t|Z^nS^{t-1}} \}_{t=1}^n \)
A distortion pair \((D_b, D_e)\) is achievable if there exists a sequence of source-channel encoders and decoders \((f_n, g_n)\) such that

\[
\mathbb{E}[d(S^n, \hat{S}^n)] \leq n D_b
\]

and

\[
\min_{\{P_{\hat{S}_t|Z^nS^{t-1}}\}_{t=1}^n} \mathbb{E}[d(S^n, \hat{S}^n)] \geq n D_e.
\]
We consider

- Scheme O – Operationally separate SC coding [Schieler et al. Allerton 2012]
- Scheme I – Joint SC coding using Hybrid Coding
- Scheme II – Joint SC coding using superposition Hybrid Coding
Scheme O – operational separate

Theorem

A distortion pair \((D_b, D_e)\) is achievable if

\[
I(S; U_1) < I(U_2; Y)
\]

\[
I(S; \hat{S}|U_1) < I(V_2; Y|U_2) - I(V_2; Z|U_2)
\]

\[
D_b \geq \mathbb{E} \left[d(S, \hat{S}) \right]
\]

\[
D_e \leq \eta \min_{a \in \hat{S}} \mathbb{E}[d(S, a)] + (1 - \eta) \min_{t(U_1)} \mathbb{E}[d(S, t(U_1))]
\]

for some distribution \(\overline{P}_S \overline{P}_{\hat{S}|S} \overline{P}_{U_1|\hat{S}} \overline{P}_{U_2} \overline{P}_{V_2|U_2} \overline{P}_{X|V_2} \overline{P}_{YZ|X}\), where

\[
\eta = \frac{[I(U_2; Y) - I(U_2; Z)]^+}{I(S; U_1)}.
\]
Hybrid coding

- at least optimal for P2P communication [Minero et al.]
- achieves best known bounds in multiuser settings
- Secrecy: need \textit{stochastic symbol-by-symbol mapping}
A distortion pair \((D_b, D_e)\) is achievable if

\[
\begin{align*}
I(U; S) &< I(U; Y) \\
D_b &\geq \mathbb{E}[d(S, \phi(U, Y))] \\
D_e &\leq \beta \min_{\psi_0(z)} \mathbb{E}[d(S, \psi_0(Z))] \\
&\quad + (1 - \beta) \min_{\psi_1(u, z)} \mathbb{E}[d(S, \psi_1(U, Z))]
\end{align*}
\]

where

\[
\beta = \min \left\{ \frac{[I(U; Y) - I(U; Z)]^+}{I(S; U|Z)}, 1 \right\}
\]

for some distribution \(\overline{P}_S \overline{P}_{U|S} \overline{P}_X|SU \overline{P}_{YZ|X}\) and function \(\phi(\cdot, \cdot)\).
Scheme I – achievability scheme

- Fix distribution $\bar{P}_S \bar{P}_{U|S} \bar{P}_X |SU \bar{P}_{YZ|X}$
- Codebook generation: Independently generate 2^{nR} sequences in \mathcal{U}^n according to $\prod_{t=1}^{n} \bar{P}_U(u_t)$ and index by $m \in [1 : 2^{nR}]$
Encoder

- likelihood encoder $P_{LE}(m|s^n)$ with

$$\mathcal{L}(m|s^n) = P_{S^n|U^n}(s^n|u^n(m))$$

produces channel input through a random transformation:

$$\prod_{t=1}^n P_{X|SU}(x_t|s_t, U_t(m))$$
Scheme I – achievability scheme – continued

- **Encoder**
 - likelihood encoder $P_{LE}(m|s^n)$ with
 \[\mathcal{L}(m|s^n) = \overline{P}_{s^n|u^n}(s^n|u^n(m)) \]
 - produces channel input through a random transformation:
 \[\prod_{t=1}^{n} \overline{P}_{X|SU}(x_t|s_t, U_t(m)) \]

- **Decoder**
 - good channel decoder $P_{D1}(\hat{m}|y^n)$ w.r.t.
 codebook $\{u^n(a)\}_a$ and memoryless channel $\overline{P}_{Y|U}$
 - deterministic mapping $\phi^n(u^n, y^n)$ is the concatenation of
 \[\{\phi(u_t, y_t)\}_{t=1}^{n} : \]
 \[P_{D2}(\hat{s}^n|\hat{m}, y^n) \triangleq \mathbb{1}\{\hat{s}^n = \phi^n(u^n(\hat{m}), y^n)\} \]
Analysis outline – at legitimate receiver

- System induced distribution \mathbf{P}
- Idealized distribution \mathbf{Q}

\[
\mathbf{Q}_{MU^nS^nX^nY^nZ^n}(m,u^n,s^n,x^n,y^n,z^n) \triangleq \frac{1}{2^{nR}} \mathbb{I} \{u^n = U^n(m)\} \prod_{t=1}^{n} \overline{P}_{S|U}(s_t|u_t) \prod_{t=1}^{n} \overline{P}_{X|SU}(x_t|s_t,u_t) \prod_{t=1}^{n} \overline{P}_{YZ|X}(y_t,z_t|x_t).
\]

- soft-covering: $R > I(U;S) \Rightarrow \mathbf{P} \approx \mathbf{Q}$
- channel coding: $R \leq I(U;Y) \Rightarrow$

\[
\mathbb{E}_{C(n)} \left[\mathbb{E}_{\mathbf{P}} \left[d(S^n, \hat{S}^n) \right] \right] \leq \mathbb{E}_{\overline{P}}[d(S, \phi(U, Y))] + \delta_n
\]
Analysis outline – at eavesdropper

- auxiliary distribution

\[\tilde{Q}_{Z^n S_i}^{(i)}(s^i, z^n) \triangleq \prod_{t=1}^{n} \overline{P}_Z(z_t) \prod_{j=1}^{i} \overline{P}_{S|Z}(s_j|z_j) \]

- soft-covering: \(R > I(Z; U) \Rightarrow \tilde{Q}_{Z^n S_i}^{(i)} \approx Q_{Z^n S_i} \)

- \(i \) can go up to \(\beta n \), for any \(\beta < \frac{R - I(U; Z)}{I(S; U|Z)} \)

- phase transition in distortion
 - before \(\beta n \):
 - \(\min \psi_0 \{i(s_i^{-1}, z^n)\}_i \mathbb{E}_P \left[\frac{1}{k} \sum_{i=1}^{k} d(S_i, \psi_0_i(S_i^{-1}, Z^n)) \right] \geq \min_{\psi_0(z)} \mathbb{E}_P \left[d(S, \psi_0(Z)) \right] - \epsilon_n \)
 - after \(\beta n \):
 - \(\min \psi_1 \{i(s_i^{-1}, z^n)\}_i \mathbb{E}_P \left[\frac{1}{k} \sum_{i=j}^{n} d(S_i, \psi_1_i(S_i^{-1}, Z^n)) \right] \geq \min_{\psi_1(u,z)} \mathbb{E}_P \left[d(S, \psi_1(U, Z)) \right] - \epsilon_n \)
Theorem

A distortion pair \((D_b, D_e)\) is achievable if

\[
I(V; S) < I(UV; Y) \\
D_b \geq \mathbb{E}[d(S, \phi(V, Y))] \\
D_e \leq \min\{\beta, \alpha\} \min_{\psi_0(z)} \mathbb{E}[d(S, \psi_0(Z))] \\
\quad + (\alpha - \min\{\beta, \alpha\}) \min_{\psi_1(u, z)} \mathbb{E}[d(S, \psi_1(U, Z))] \\
\quad + (1 - \alpha) \min_{\psi_2(v, z)} \mathbb{E}[d(S, \psi_2(V, Z))]
\]

for some distribution \(P_S P_V|S P_U|V P_X|SUVPYZ|X\) and function \(\phi(\cdot, \cdot)\).
Scheme II – achievability proof
Scheme II – achievability proof
Relations among schemes

- Scheme II generalizes Scheme I
- Scheme II generalizes Scheme O
Perfect secrecy outer bound

Theorem

If (D_b, D_e) is achievable, then

\[
I(S; U) \leq I(U; Y) \leq D_b \geq \mathbb{E}[d(S, \phi(U, Y))] \\
D_e \leq \min_{a \in \hat{S}} \mathbb{E}[d(S, a)]
\]

for some distribution $\bar{P}_S \bar{P}_{U|S} \bar{P}_{X|SU} \bar{P}_{YZ|X}$ and function $\phi(\cdot, \cdot)$.
Numerical example

- Source: i.i.d. $\text{Bern}(p)$
- Channels: BSC with crossover probabilities p_1, p_2
- Legitimate receiver: lossless decoding
- Eavesdropper: Hamming distortion
Numerical example

Figure: Distortion at the eavesdropper as a function of source distribution p with $p_1 = 0$, $p_2 = 0.3$
Summary

- **have done:**
 - achieved better performance in joint source-channel secrecy with hybrid coding
 - superposition hybrid coding (II) fully generalizes basic hybrid coding (I) and operationally separate SC coding (O)

- **have not done:**
 - Can I outperform O?
 - Is II strictly better than I?
 - non-trivial outer bound?