Problem Set \#1

1. Complex numbers - polar (6 pts).

Any complex number z written in rectangular (Cartesian) form

$$
z=x+i y
$$

where x is the real and y is the imaginary part, can also be written in polar (phasor) form

$$
z=|z|(\cos \theta+i \sin \theta)=|z| e^{i \theta}
$$

where θ is the phase $\measuredangle z$ and $|z|$ is the magnitude of the complex number z.
Using the Euler formula, compute the magnitude and phase of the complex numbers provided in rectangular form below:
(i) $z=3+2 i$
(ii) $z=1-i$
(iii) $z=e^{2-i \pi}$
(Please be careful while calculating the phase of $z=x+i y$. The phase $\measuredangle z$ is not always equal to $\arctan \frac{y}{x}$. Tangent is periodic with π (i.e. $\tan \theta=\tan (\pi+\theta)$), and $\arctan \frac{y}{x}=\arctan \frac{-y}{-x}$. However, that property is not true for $e^{i \theta}!$ Hence, depending on the signs of x and y, you should pick the right angle. Insert your final answers into the polar form and check the equality.)
2. Complex numbers - rectangular (6 pts).

Compute the real and imaginary parts of the complex numbers:
(a) e^{i}
(b) $e^{i t}(\cos (3 t)+\sin (2 t))(t$ is real $)$
(c) $1 /(1+i)$
3. Imaginary square root (4 pts).

Express the square root of $(1+i)$ in rectangular coordinates.
4. Phase calculation (8 pts).

The complex number z is given by

$$
z=\frac{z_{1}}{z_{2}}=\frac{1+3 i}{1-i}
$$

(a) Express z in rectangular form.
(b) Express z in polar form. Compute the magnitude and phase of z in terms of the magnitude and phase of z_{1} and z_{2}.
(c) Using the results of (a) and (b), show that $\arctan 3+\arctan 2=\frac{3 \pi}{4}$.
5. Shifting and scaling functions (10 pts).

Let

$$
f(t)=\left\{\begin{array}{lc}
t & 0 \leq t<1 \tag{1}\\
2-t & 1 \leq t<2 \\
0 & \text { else }
\end{array}\right.
$$

Sketch each of the following signals. All sketches must have clearly labeled axes.
(a) $f(t)$
(b) $f(t)+1$
(c) $f\left(\frac{t}{2}\right)$
(d) $f(t+2)$
(e) $f(-t-1)$

