Problem Set #11

1. (6 points) **Hamming codes for error correction:**

 (a) Hamming codes correct single bit errors. For any integer \(k \) there is a Hamming code of size \(n = 2^k - 1 \) which consists of \(k \) bits of redundancy. What is the rate of Hamming codes as a function of \(n \) (rate means bits of message per bit of transmission)? What constant does this approach as \(n \) goes to infinity?

 (b) Suppose each transmitted bit has probability \(p \) of being received in error. What is the probability that the Hamming code is decoded in error, as a function of \(n \)? (Hint: The probability of error is one minus the probability of being correct. For correct decoding there must be either no bit errors or one error, which can occur in \(n \) possible places. Add the contributions of the probability of each of these sequences. For example, for the no error sequence, the probability is \((1 - p)^n\).) What constant does this approach as \(n \) goes to infinity?

2. (4 points) **One-time pad:** Apply a one-time pad to the message \(m = 0110100101 \) using the key \(k = 0011011010 \).

3. (20 points) **Laplace Transform and Z-transform:**

 (a) Use the Laplace transform integral to calculate the Laplace transform of \(x(t) = 5te^{-2t}u(t) - 3e^{-t}u(2 - t) \) and corresponding region of convergence (ROC).

 (b) Calculate the z-transform of \(x[n] = 4^n u[n - 5] \). What is the ROC here?

 (c) Calculate the z-transform and its ROC of

 \[
 x[n] = \begin{cases}
 3, & n = 2, \\
 -5, & n = 7, \\
 1, & n = 10, \\
 0, & \text{else}.
 \end{cases}
 \]