Problem Set \#2

1. (a) (3 pts). Give examples of signals that have the listed properties:
i. A signal with one independent variable that is something other than time,
ii. A signal (other than image or video) where there is more than one independent variable,
iii. A signal that is most naturally modeled as analog,
iv. A signal that is most naturally modeled as digital.
(b) (3 pts). Determine whether the following signals (a) are continuous-time or discretetime; (b) take on a continuous or discrete set of values.
i. Gear of a car in motion (i.e. 2nd gear, 3rd gear, etc.),
ii. Speed of a car in motion,
iii. The Hi and Low temperature everyday in the past 10 days.
2. (3 pts). Assume that the signal $x(t)$ is periodic with period T_{0}, and that $x(t)$ is odd (i.e. $x(t)=-x(-t))$. What is the value of $x\left(T_{0}\right)$?
3. (6 pts). Assume that $y(t)$ is an arbitrary periodic signal with fundamental period T_{0}. Must $x_{1}(t)$ and $x_{2}(t)$ both be periodic if:
(a) $y(t)=x_{1}(t)+x_{2}(t)$
(b) $y(t)=x_{1}(t) \times x_{2}(t)$
4. (4 pts). What is the fundamental period of $\cos \left(2 \pi t / T_{1}\right)+\cos \left(2 \pi t / T_{2}\right)$ if $T_{1}=8$ and $T_{2}=10$? What about if $T_{1}=3$ and $T_{2}=\pi$?
5. Fourier Series (6 pts).
(a) State the fundamental period and Fourier series coefficients of the signal

$$
x(t)=e^{-i \pi t}+e^{2(1+i \pi t)} .
$$

(b) What signal with fundamental period $T_{0}=1$ corresponds to the Fourier series coefficients

$$
c_{k}=\left\{\begin{array}{ll}
\frac{1}{2 i}, & k=1 \\
\frac{-1}{2 i}, & k=-1 \\
0, & \text { otherwise }
\end{array},\right.
$$

where c_{k} is the coefficient of the basis element $e^{i \frac{2 \pi}{T_{0}} k t}$ (please simplify with Euler's formula)?

