Problem Set #2

- 1. (a) (3 pts). Give examples of signals that have the listed properties:
 - i. A signal with one independent variable that is something other than time,
 - ii. A signal (other than image or video) where there is more than one independent variable,
 - iii. A signal that is most naturally modeled as analog,
 - iv. A signal that is most naturally modeled as digital.
 - (b) (3 pts). Determine whether the following signals (a) are continuous-time or discretetime; (b) take on a continuous or discrete set of values.
 - i. Gear of a car in motion (i.e. 2nd gear, 3rd gear, etc.),
 - ii. Speed of a car in motion,
 - iii. The Hi and Low temperature everyday in the past 10 days.
- 2. (3 pts). Assume that the signal x(t) is periodic with period T_0 , and that x(t) is odd (*i.e.* x(t) = -x(-t)). What is the value of $x(T_0)$?
- 3. (6 pts). Assume that y(t) is an arbitrary periodic signal with fundamental period T_0 . Must $x_1(t)$ and $x_2(t)$ both be periodic if:
 - (a) $y(t) = x_1(t) + x_2(t)$
 - (b) $y(t) = x_1(t) \times x_2(t)$
- 4. (4 pts). What is the fundamental period of $\cos(2\pi t/T_1) + \cos(2\pi t/T_2)$ if $T_1 = 8$ and $T_2 = 10$? What about if $T_1 = 3$ and $T_2 = \pi$?
- 5. Fourier Series (6 pts).
 - (a) State the fundamental period and Fourier series coefficients of the signal

$$x(t) = e^{-i\pi t} + e^{2(1+i\pi t)}.$$

(b) What signal with fundamental period $T_0 = 1$ corresponds to the Fourier series coefficients

$$c_{k} = \begin{cases} \frac{1}{2i}, & k = 1\\ \frac{-1}{2i}, & k = -1\\ 0, & \text{otherwise} \end{cases}$$

where c_k is the coefficient of the basis element $e^{i\frac{2\pi}{T_0}kt}$ (please simplify with Euler's formula)?