Problem Set \#5

1. Discrete-time convolution (3pts).

Compute and plot $y[n]=x[n] * h[n]$, where

$$
\begin{gathered}
x[n]=\delta[n-2]+2 \delta[n-3]-2 \delta[n-4]-\delta[n-5] \\
h[n]= \begin{cases}1 & \text { if } 3 \leq n \leq 7, \\
0 & \text { otherwise } .\end{cases}
\end{gathered}
$$

2. Continuous-time convolution (6 pts).

Define the function $x(t)$ by

$$
x(t)=\left\{\begin{aligned}
2 & \text { if } 0 \leq t<1 \\
-1 & \text { if } 1 \leq t<2 \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Please recall the definition of the two continuous-time functions: unit step function $u(t)$, and Rect function $\operatorname{rect}(t)$, and then sketch each of the following convolved signals:
(a) $u(t) * u(t)$
(b) $x(t) * u(t)$
(c) $x(t) * \operatorname{rect}(t)$
3. Convolution and the Fourier transform (3 pts).

What is the Fourier transform of $\operatorname{rect}(t) * \operatorname{sinc}(t)$? The convolution integral will not be the easiest way to do this.
4. Averaging system (6 pts).

Suppose $x[n]$ denotes the closing price of a stock on day n. To smooth out fluctuations, a tool often used by technical analysts is the 30-day moving average of the stock price. Let $y[n]$ denote this 30 -day moving average, where the average at time n uses the closing price on day n together with the previous 29 days.
(a) Write an expression for $y[n]$ in terms of $x[\cdot]$.
(b) $y[n]$ can be thought of as the output of an LTI system when the input is $x[n]$. What is the impulse response of this system?
(c) How does the impulse response change if instead of the "lagging" average above we use $x[n]$ together with 15 days in the past and 14 days in the future?
(d) What is a practical problem of using the average of part (c)?
5. System response (3 pts).

A continuous-time LTI system has impulse response $h(t)$ with Fourier transform $H(f)$. What is the output of the system when the input is $\sin (t)$?

