Problem Set \#8

1. (5 pts). Sampling: Suppose $x(t)$ is real and has a non-zero Fourier transform only on the set of frequencies $5-8 \mathrm{~Hz}$ (both positive and negative). Draw an illustration of the spectrum of $x(t)$. Also draw an illustration of the spectrum when $x(t)$ is sampled at 16 Hz . What is the lowest sampling rate from which the signal can still be recovered?
2. (6 pts) Circular Convolution Property: Consider the following two finite duration discretetime signals.

$$
\begin{array}{llll}
x[0]=1, & x[1]=1, & x[2]=0, & x[3]=0 . \\
y[0]=0, & y[1]=1, & y[2]=0, & y[3]=1 .
\end{array}
$$

(a) Calculate the circular convolution of $x[n]$ and $y[n]$.
(b) Calculate the DFT of $x[n]$ and $y[n]$, multiply, and calculate the inverse DFT.

Note: Make sure to use the DFT rather than the DTFS (the difference is the normalization constant.). If you use the DTFS then you need to include the factor of $N=4$ is the convolution property.
3. (4 pts) Circular Convolution and Multiplication Property: Suppose $x[n]$ and $y[n]$ have the same duration $N \geq 3$. Their DFTs are given by $a[k]$ and $b[k]$. We know in advance that

$$
\sum_{l=0}^{N-1} a[l] b[k-l \quad \bmod N]=1+e^{-i \frac{4 \pi k}{N}}
$$

for $k=0,1, \cdots, N-1$.
(a) If $x[n]=2^{-n}, n=0,1, \cdots, N-1$, calculate $y[n]$. Is $y[n]$ unique?
(b) If $x[n]=1+(-1)^{n}, n=0,1, \cdots, N-1$, redo part (a).
4. (6 pts) Band Pass Signal Sampling: Suppose that the Fourier transform of a real signal $x(t)$ is nonzero only for $f_{1} \leq|f| \leq f_{2}$. A naive application of Nyquist Sampling Theorem will lead to a sampling frequency of at least $2 f_{2}$. However, for such a band pass signal, it is possible to sample at a lower frequency and recover $x(t)$.

The signal $x(t)$ is multiplied by a complex exponential function $e^{i 2 \pi f_{0} t}$ where f_{0} is chosen to be $\frac{1}{2}\left(f_{2}+f_{1}\right)$. The cutoff frequency of the ideal low pass filter is $\frac{1}{2}\left(f_{2}-f_{1}\right)$.

(a) Sketch the Fourier transform of $x_{s}(t)$.
(b) Determine the largest possible sample period T for recovering $x(t)$.
(c) Design a system that recovers $x(t)$ from $x_{s}(t)$.

