
Chapter 10

Information Protection

In many systems, there is often a desire and/or need to protect information for
a variety of reasons and in a variety of ways. There are at least four distinct
subareas that address different needs:

• Error detection and correction codes This area is also commonly
called coding theory. The goal of these techniques is to add redundancy
(extra bits) to protect against (usually) random errors. The data is ex-
panded to try to get reliable communication through an unreliable (noisy)
channel.

• Cryptography This term is often used interchangeably with the term
cryptology, although sometimes these terms are used with slightly different
meanings. The goal of these techniques is to encrypt data to make it
unintelligible except for intended users. Using suitable keys, the intended
users can decrypt the string of symbols to recover the original data. These
techniques are typically used for security or authentication.

• Spread spectrum communications This area was originally developed
for military applications to avoid jamming or interception of radio com-
munications. If the enemy knows the frequency band which is being used
for communication, then they could “tune in” and eavesdrop or transmit
noise at the same frequency to jam/corrupt the transmission. Roughly,
spread spectrum techniques use a broad range of frequencies in various
ways to reduce eavesdropping and jamming. These techniques are now
playing a major role in mobile/wireless communications.

• Watermarking This area has seen much recent activity as various forms
of media are widely available digital form and over the internet. Wa-
termarking is closely related to topics known as steganography and data

∗ c©2001, 2002 by Sanjeev R. Kulkarni. All rights reserved.
†Lecture Notes for ELE201 Introduction to Electrical Signals and Systems.
‡Thanks to Sean McCormick for producing the figures.

1



2 CHAPTER 10. INFORMATION PROTECTION

hiding. The goal is to keep data intelligible, but utilize redundancy in
the data to embed additional information. For example, for an image,
one might like to add either a visible or invisible watermark for ownership
protection or other purposes.

In this chapter, we focus only on error detection and correction.

10.1 Expansion for Protection

As mentioned above, the goal of error detection and/or correction is to deal
with unintended noise in data, which is usually assumed to be random. The key
idea is to add redundancy to the data so that there is some internal consistency
or structure that can be used to combat the noise.

For example, a very simple (but not very useful) idea to detect errors is to
repeat the data twice. If we wish to send the message 00101, we will instead
transmit 00101 00101. If the recipient gets something other than the same copy
twice, they will know an error has occurred. However, the receiver will not be
able to correct the error, since they will not know which copy contains the error.
But, the receiver may then ask for yet another transmission!

To be able to correct a single error, we could repeat the message three times
and send 00101 00101 00101. In this case, if the transmission incurs a single
error anywhere in the message (e.g., becomes 00101 01101 00101), the receiver
will still have two copies of the original (uncorrupted) message that match, and
so will be able to correct the error. Unfortunately, these simple methods expand
the data so much that they are not very practical. However, much more clever
and sophisticated techniques exist to do similar things much more efficiently.

The main point is that we build resilience to noise by expanding the data.
This is exactly the opposite of what we were trying to do in compression. There
we were trying to squeeze out all the redundancy we could to reduce the data
as much as possible. Here we are adding back some redundancy. Although
at first it might seem silly, doing both can be very productive. The reason
is that redundancy in the original data is either not highly structured, or the
structure is not known well enough to be fully exploited. Therefore, we can reap
substantial gains by removing the original redundancy and then adding some
redundancy back but in a careful and highly structured manner. In this way,
we can reduce the overall data size and increase the resilience to noise.

The techniques are so useful they are used in a huge range of applications
involving data transmission and/or storage. For example, error detection and/or
protection is used in modems, CD players, transmission in data networks, cell
phones, and many other applications.

10.2 Noise and Level of Protection

As one might expect, the suitability of a technique depends crucially on as-
sumptions about the noise. Three common types of noise in binary data are



10.2. NOISE AND LEVEL OF PROTECTION 3

Substitution:

Original message 1 5 9 B
Original binary signal 0001 0101 1001 1011
Binary signal with error 0001 0001 1001 1011
Message with error 1 1 9 B

Erasure:

Original message 1 5 9 B
Original binary signal 0001 0101 1001 1011
Binary signal with erasure 0001 0 01 1001 1011
New Binary signal 0001 0011 0011 0110
Message with error 1 3 3 6

Addition:

Original message 1 5 9 B
Original binary signal 0001 0101 1001 1011
Binary signal with addition 0001 01101 1001 1011
New Binary signal 0001 0110 1100 1101
Message with error 1 6 C D

Figure 10.1: Types of Noise in Binary Data

substitution errors (in which a 0 turns into a 1 or vice versa), erasures (also
called deletions, in which a bit is lost), and additions (also called insertions, in
which an extra bit is inserted). Examples of these are shown in Figure 10.1.
The most common model for noise is the substitution error, which is what we
will primarily consider.

In addition to the type of noise, the suitability of an error protection tech-
nique depends on both the tolerable error rate in the system as well as on the
distribution of the noise. In some applications we can tolerate a large amount
of error. For example, in sending a fax, a small amount of noise will not cause
a problem and may not even be noticed. Even if one in every ten thousand
pixels gets corrupted, the result will still be useful. On the other hand, if we are
transmitting an executable program file of a couple megabytes, even one error
will likely render the transmission useless. Financial data or other records may
also require an extremely high level of reliability.

Typically one designs a method to protect up to some number of errors, for
example, single error detection, triple error detection plus double error correc-
tion, etc. When we say a code provides a certain level of protection, we mean
that it can detect and/or correct any error of that particular type. For exam-
ple, a code that provides single error correction against substitution errors can



4 CHAPTER 10. INFORMATION PROTECTION

correct any single substitution error, including errors in the check bits added to
provide the protection. Some single error correcting codes may happen to be
able to correct certain double errors, but unless the code can correct all double
errors it will not be considered a double error correcting code.

Here we will primarily focus on single error detection and single error cor-
rection, but we briefly discuss the conceptual approach for protecting against
multiple errors. We will also focus almost exclusively on the case of binary data
– i.e., just 0’s and 1’s (except for ISBN numbers that we will describe briefly).
Binary data is the most commonly encountered setting in applications, and
moreover many of the ideas in the binary case can be extended to non-binary
data.

Typically, the data will be divided into units, e.g., 8 bits for each gray level
or symbol, or 128 bits for a set of symbols or other packet of data. Redundancy
is added to each data unit to provide the desired level of protection. The level
of protection chosen may depend on the probability of error for each bit, the
size of the data units, and the tolerable level of corrupted units.

For example, suppose we are working with 8 bit codewords and can tolerate
an average of one erroneous codeword out of every million codewords. Let p
be the probability that a given bit gets corrupted. If p is small enough (say
less than 10−7 so that only one bit in every ten million gets corrupted), then
the number of corrupted codewords may be within tolerable bounds. In this
case, we may not need any error protection since the probability of error itself is
sufficiently small. On the other hand, if a single error per codeword occurs more
often than 1 in a million, but two or more errors are very unlikely, then single
error correction may be enough. Even single error detection may be enough if
re-transmission of corrupted data units is possible. The main point is that the
level of protection we need to design for depends greatly on the probability of
an error, size of data units, and tolerable losses in the data.

Actually, in some cases knowing just the probability of error is not enough.
The distribution of noise may also be important. For example, if errors are
expected to be “bursty,” then if an error occurs several consecutive bits may get
corrupted. Refinements to the basic techniques may be necessary to deal with
such cases, although we will not deal with such issues here.

10.3 Single Error Detection

As mentioned above, repeating the message (or each bit) twice provides a simple,
if impractical scheme for detecting single errors. The downside is that this
doubles the amount of data. Some partial consolation for this outrageous excess
data is that repetition is robust to essentially any type of single error (since the
two copies won’t match and hence error will be detected). It can even detect
many types of double (or more) errors (except with presumably small probability
when both copies happen to get corrupted in the same way). Nevertheless, the
price of doubling the data is too great, and if one is concerned about double
errors or other types of errors other techniques may be more suitable.



10.3. SINGLE ERROR DETECTION 5

Parity Checking

Assume we have a data stream that 001 101 111 001
consists of groups of three bits

We add a check bit to each group to 001 1 101 0 111 1 001 1
make even parity

Errors will make recieved parity odd + 1 1
000 1 101 0 101 1 001 1

Unless two errors occur in the same + 11 1 1
block, making even parity 010 1 101 0 101 1 100 1

Figure 10.2:

Parity Check Bits
A very elegant (and also simple) alternative to to detect single substitution

errors is to add an extra bit, so that the number of 1’s in the data unit (including
the check bit) is even. In this case, the resulting message including the check
bit is said to have even parity. To determine whether or not there is an error in
a received data unit, the receiver simply checks the parity of the received data.
If it is odd, then clearly there was an error. If it is even, no error is assumed to
have occurred. Of course, in this case, if two errors occur then these will not be
detected. Instead, the receiver will assume the data received is error-free. An
example is shown in Figure 10.2.

Of course, we could have chosen to use odd parity, instead of even parity.
That is, we could have appended a check bit to make sure the number of 1’s in
the data unit is odd. This will work just as well. The main requirement is that
the encoder and decoder must agree on whether to use even or odd parity.

A parity check bit provides single error detection with a single additional
bit. If the probability of error for each bit is quite small, then the probability
of a double error will be extremely small. In this case, a parity check bit can be
quite adequate, especially in applications where the data can be re-transmitted
or re-read. Thus, for single error detection parity check bits are the most widely
used scheme.

ISBN numbers
The performance of a protection scheme depends on type of noise encoun-

tered, and therefore the scheme should be designed taking knowledge of noise
properties into account. We end this section with an example designed for
commonly occurring human errors.

All books are assigned a 10-digit International Standard Book Numbers (or



6 CHAPTER 10. INFORMATION PROTECTION

ISBN). You can usually find the ISBN on the back of the book near the bot-
tom. ISBN’s give a standardized way to identify a given book. E.g., the book
Information Theory: 50 Years of Discovery published by the IEEE Press, has
the ISBN 0-7803-5363-3.

To discuss ISBN’s in more detail, we will denote the 10 digits in an ISBN by
d10d9 . . . d2d1. So, for the book mentioned above, d10 = 0, d9 = 7, and so on.

The digit d10 indicates whether the book is published by a U.S. or interna-
tional publisher. The next two digits d9d8 identify the publisher. The digits d7

through d2 are a book number assigned by the publisher.
The last digit, d1 is a check digit. It is chosen so that the quantity

10d10 + 9d9 + · · ·+ 2d2 + d1

is divisible by 11. For example, for the book mentioned above, we get

10× 0 + 9× 7 + · · ·+ 2× 3 + 3 =

A natural question is why is the weighted sum used (instead of a check using
an unweighted sum)? Using a weighted sum allows detecting any single substi-
tution error, which could also be detected by an unweighted scheme. However,
a common human error is to switch order of adjacent digits. The weighted
sum scheme can detect this (for any adjacent digits), while an unweighted sum
clearly cannot (since switching digits would leave the sum unchanged).

What happens if d1 needs to be 10 in order to make to make the weighted
sum divisible by 11 (for example, if 10d10 + · · · + 2d2 = 210)? The convention
is to use the symbol “X” as the last “digit” in this case.

10.4 Single Error Correction: Preliminaries

As with single error detection, simplest scheme for single error correction repe-
tition, namely just repeat the message 3 times. In this case, to correct an error
the receiver can simply take a majority vote, bit by bit. Although this triplicate
code is simple and quite robust to different types of errors, it’s not practical
because it triples the amount of data. Much more efficient schemes exist that
we will discuss in the next three sections, focusing only on substitution errors.
However, first we discuss some preliminaries.

Some clarification is needed on our use of terms describing a certain level of
protection. First, it’s clear that by repeating the message three times, certain
(in fact many) double errors can be detected (as well as corrected). But, does
the repetition code allow detecting all double errors?

Well, in a sense one might say yes, since if there are any two errors then
certainly not all three copies of the message will be the same. Therefore, the
receiver will know that something is wrong. However, the problem with this is
that if we insist on correcting single errors, then certain double errors (namely,
an error in the same bit in two of the copies) will be incorrectly assumed to be
single error, and therefore will be “fixed” incorrectly.



10.4. SINGLE ERROR CORRECTION: PRELIMINARIES 7

For example, suppose the original message is 00101 so that 00101 00101
00101 gets transmitted. If two errors occur and they happen to be the first bit
in the first two copies, then the data received will be 10101 10101 00101. In
this case, a receiver that is implementing single error correction will erroneously
think that there is a single error in the first bit of the third copy, and will
“correct” this error concluding that the original message was 10101.

Now, if we are not interested in correcting single errors, then any double
errors can be detected properly. Although this might be useful in some cases,
the convention is that when a code is said to detect and/or correct a certain
number of errors, it is assumed that all smaller number of error will be detected
and corrected. Of course, if a code can correct a certain number of error, then
it can surely detect that same number of error. Thus, the hierarchy in terms of
level of protection is (1) single error detection, (2) single error correction, (3)
single error correction plus double error detection, (4) double error correction,
(5) double error correction plus triple error detection, etc.

Now we introduce some notation and terminology that will let us better
compare the performance of different codes. An (n, m) code will refer to a code
with data units that have:

• n total bits

• m message/information bits

• k = n−m check bits

The redundancy and excess redundancy of the code are defined to be

redundancy =
n

m
= 1 +

k

m
(10.1)

excess redundancy =
k

m
(10.2)

For a given level of protection, we would like the redundancy to be as small as
possible.

As an example, consider the case of the triplicate code. With m message
bits, we will have n = 3m total bits and k = 2m check bits. Therefore, the
redundancy is 3 and the excess redundancy is 2. It so happens that for the
triplicate code, the redundancy and excess redundancy do not depend on the
size of the data unit (i.e., the number of message bits m or the number of total
bits n). However, in general, for a given lass of codes the redundancy decreases
as the size of the data unit increases.

For example, for single error detection with a parity check bit, the redun-
dancy is 1 + 1/m and the excess redundancy is 1/m. The larger the block to
which we append the check bit, the smaller the redundancy. The tradeoff is that
as the size of the block increases, the probability that one or more of the bits
is corrupted increases. If it’s too large, then an unacceptable number of blocks
may have single or multiple (possibly undetected) errors.



8 CHAPTER 10. INFORMATION PROTECTION

10.5 Rectangular and Triangular Codes

Rectangular Codes
A clever yet simple method for single error correction is to arrange the block

of message/information bits in a rectangular array, and then add a parity check
bit to each row and each column. Figure 10.5 shows the arrangement of message
and check bits with a 3x4 array of message bits.

• • • • ×
• • • • ×
• • • • ×
× × × × ×

Figure 10.3:

The check bit at the end of a row is chosen to make all the one in that row
(including the check bit) have the appropriate parity. Similarly for the columns.
Any single error can be corrected by finding the row and column for which the
parity check fails.

The check bit in the the corner is actually not necessary. If it’s used, the
check bit in the corner will check both the row and column of check bits. That
is, the corner bit is chosen to make all the check bits (including the corner) have
the proper parity. In this case, if there’s an error in a check bit, then both the
corresponding row or column check will fail and the corner check will fail. If we
don’t use the corner bit, then everything will work as before if the error is in
one of the message bits. If the error is in a check bit, then only the check for
that row or column will fail. In this case, the arrangement of message bits and
check bits is as shown in Figure 10.4.

• • • • ×
• • • • ×
• • • • ×
× × × ×

Figure 10.4:

Example 10.1 (Example of a 3x4 Rectangular Code)

Suppose the original message is 101101011000. Arranging this into a rect-
angular array we get

1 0 1 1
0 1 0 1
1 0 0 0



10.5. RECTANGULAR AND TRIANGULAR CODES 9

Using even parity, the message with the check bits is

1 0 1 1 1
0 1 0 1 0
1 0 0 0 1
0 1 1 0

Now suppose the receiver observes a possible corrupted bit stream. The
receiver would arrange the bits in the same way, and perform the parity checks
on each row and column as shown below.

1 0 1 1 1
0 1 1 1 0 F
1 0 0 0 1
0 1 1 0

F

Since the parity checks in row 2 and column 3 fail, this indicates that the position
of the error is the bit in the 2nd row and 3rd column. The receiver can therefore
correct the error and recover the original message.

There are several things to note about this error correction scheme:

• As before, it doesn’t matter whether we use even parity or odd parity, as
long as both the coder and decoder agree.

• In an algorithmic implementation, we don’t actually have to arrange the
bits in a rectangle. We just need to add the (redundant) check bits that
perform the necessary parity checks. The data are arranged in a stream,
and the coder and decoder only need to know (agree) which subsets are
supposed to satisfy the parity checks.

The redundancy of a general rectangular code with an array of a1 by a2

message bits can computed, but for simplicity, we consider the special case of
a square code. For m = a2 message bits using a square code, we have k = 2a

and n = a2 + 2a (assuming we do not use the use the extra corner check bit).
In this case, the redundancy is 1 + 2/a and the excess redundancy is 2/a. Even
for a = 2, this code is more efficient than the triplicate code, and the benefits
clearly get much greater for larger a.

An alternate way to compare the codes is to fix the number of check bits k
and see how many message bits can be accommodated. For the triplicate code,
m = k/2, but for the square code, m = (k/2)2.

Triangular Codes
A more efficient code can be obtained by arranging the message bits in

triangular array, and adding another layer (diagonal) of check bits, as shown in
Figure 10.5.



10 CHAPTER 10. INFORMATION PROTECTION

• • • • ×
• • • ×
• • ×
• ×
×

Figure 10.5:

Each check bit checks both the row and column to which it belongs. The
check bit makes sure that the total number of ones in the row and column
together, including the check bit itself, is of the right parity.

If there is a single error in a message bit, then two check bits (in both
the corresponding row and column) will fail, and the receiver will know which
message bit is in error. If a check bit is in error, then only that check bit will
fail the parity check. In either case, a single error can be corrected. An example
is shown in Figure 10.6.

Figure 10.6: (a.) shows a data bit in error, and two check bits indicating error.
(b.) shows only a check bit with an error, indicating the error is only in the
check bit.

As with the rectangular codes, although the picture helps conceptually, in
an implementation one does not really need to arrange the bits in a triangular
array. Instead, check bits are added that simply check the appropriate subsets
of bits.

To get an idea of the efficiency of the triangular code, consider a fixed number
of check bits k. The number of message bits that can be accommodated is

m = 1 + 2 + · · ·+ (k − 1) =
k(k − 1)

2



10.6. HIGHER DIMENSIONAL CODES 11

This is larger than the number of message bits for the square code for any k ≥ 2,
which is always the case for these codes.

10.6 Higher Dimensional Codes

An idea that leads to codes even more efficient than the triangular codes is to
arrange the data in a 3-D cube. A check bit would be added for each plane.
That is the check bits would be added along the three edges of the coordinate
axes, as depicted in Figure 10.7. Each check bit would be chosen so that the
number of 1’s in all bits that lie in the corresponding plane have even parity.
Note that, as before, we don’t need to add a check bit in the corner.

Figure 10.7: 3-D parity checking code

If the data (including the check bits) is arranged in a cube of size s× s× s,
then there are n = s3 − 1 total bits (the −1 is because of the missing corner).
These include k = 3(s − 1) = 3s − 3 check bits resulting in m = s3 − 3s + 2
message bits. Thus, the excess redundancy is (3s− 3)/(s3 − 3s + 2). For large
s, this is approximately 3/s2, which is better than the results in 2-D.

These results suggest that yet more efficiency can be obtained if we go to
even higher dimensions. Of course, as before, in an implementation we won’t
actually arrange the data into a hypercube. This is even difficult to depict in a
figure. Nevertheless, we can add check bits that perform the necessary checks. If
this is done, then in 4-D we will get an excess redundancy of approximately 4/s3

for large s where the bits (message and check bits) are arranged in a hypercube



12 CHAPTER 10. INFORMATION PROTECTION

with s bits along each dimension.
What’s the highest dimension possible? Well, we need at least 2 bits along

that dimension (otherwise we haven’t actually used the dimension). So, with d
dimensions, we will have n = 2d − 1 total bits (again, the −1 is for the missing
corner). We have only 1 check bit per dimension. This is because each edge has
2 positions, one of which is the corner. Hence, we will have k = d check bits,
resulting in m = 2d − d− 1 message bits.

Can we do any better by using some other tricks? The answer is no, and
we can actually see this with a relatively simple argument. Suppose we have k
check bits and wish to correct single errors. When we receive a string, we will
consider each check bit to see if the corresponding parity check passes. There
are only two possibilities for each check bit — either the test passes or not.
Thus, with k check bits, we can represent 2k situations. On the other hand,
the situations we must be able to represent include the case of no error, and n
situations for the case that the error happens to be in each of the n bits. This
gives n + 1 situations that we must be able to represent. Therefore, we must
have n+1 ≤ 2k so n ≤ 2k−1. The d-dimensional case described above achieves
this constraint with equality.

The discussion above was rather abstract. Although it suggests what is the
best we can do for single error correction, it would be nice to have a concrete
algorithm that is easy to understand. This is the subject of the next section.

10.7 Hamming Codes

We’ll describe the (7,4) Hamming code, which means there are 7 total bits, 4
message bits and 3 check bits. This satisfies the optimality condition n = 2k−1
as one can easily check.

Let the check bit positions be at powers of 2, so that out of the 7 bits, the
3 check bits will be at positions 1, 2, and 4. The message bits will be placed in
the remaining 4 bits (positions 3,5,6,7). This is shown in Figure XX.

1 2 3 4 5 6 7
↑ ↑ ↑
c c c

Every number between 1 and 7 can be expressed by adding some combination
of the numbers 1, 2, and 4. This is just the binary expansion. Each check bit
will check those positions whose binary representation uses the corresponding
value. That is,

1 checks positions 1, 3, 5, 7
2 checks positions 2, 3, 6, 7
4 checks positions 4, 5, 6, 7

We will use even parity, so that, for example, check bit 1 is chosen to make
the number of 1’s in positions 1, 3, 5, 7 even.



10.7. HAMMING CODES 13

Example 10.2 (Example of Coding)

Consider the message 1011. To find the codeword, we place the message in
positions 3,5,6,7, as shown:

1 0 1 1
1 2 3 4 5 6 7

Let bi denote the value of bit i. The check bits are as follows:

check bit 1 : b1 = 0 to make b1 + b3 + b5 + b7 even
check bit 2 : b2 = 1 to make b2 + b3 + b6 + b7 even
check bit 4 : b4 = 0 to make b4 + b5 + b6 + b7 even

Therefore, the codeword is 0110011.

Error correction is also quite simple. To correct a single error, we find which
check bits fail the parity check (i.e., have odd parity), and then we add the
corresponding values. For example, if check bits 1 and 4 fail, but check bit 2
passes, we add 1 + 4 = 5. The result tells us which bit has the error. If all
checks pass then we have a valid codeword (no errors), and the original message
is in positions 3, 5, 6, 7 as they were received.

Example 10.3 (Example of Error Correction)

Suppose we receive 0110111. How can we tell which bit (if any) has an error?
We consider each check bit:

check bit 1 : b1 + b3 + b5 + b7 is odd −→ fails
check bit 2 : b2 + b3 + b6 + b7 is even −→ passes
check bit 4 : b4 + b5 + b6 + b7 is odd −→ fails

Since check bits 1 and 4 failed, the error is in position 1 + 4 = 5. Therefore,
the corrected codeword is 0110011 and the original 4 bit message in positions
3, 5, 6, 7 is 1011.

Interestingly, the way the code is constructed, the position of the error can
also seen by considering the binary number formed by the check bit results.



14 CHAPTER 10. INFORMATION PROTECTION

Specifically, c1, c2, c4 represent the parity check results where 0 represents pass-
ing and 1 represents failure of a parity check. This is the same as adding the
bits to be checked modulo 2. Then form the string c4c2c1. The result gives
the binary representation of the location of the error. For the codeword above,
checks 1 and 4 failed while check 2 passed, giving the 101 which is the binary
representation of 5. This means the error is in position 5 as we saw above.

10.8 Valid Codewords and Invalid Strings

We’ve seen that there are a large variety of codes for single error detection and
single error correction. Via a representation argument we were able to deduce
the best we can do for single error correction using k check bits. The Hamming
code achieves this optimality when the total number of bits in the data unit is
of the form n = 2k − 1. But how can we design good codes for other values of
n? And, what about higher levels of protection?

In this section, we describe a unifying conceptual view of error detection and
correction. It will give a useful way to think about the requirements for good
codes of a given size and level of protection, although unfortunately it won’t
tell us exactly what the code should be. Finding good codes and studying their
properties is still a very active area.

Using codewords of a given length, a key property that allows any kind of
error protection is that only some strings are “valid” codewords that correspond
to messages. The others are “invalid” strings that arise due to errors.

We assume that the transmitter always sends us a valid codeword corre-
sponding to the message they wish to send. If every codeword were “valid”
then there’s no hope for any kind of error detection or correction. In this case,
no matter what bit string we receive, our best guess is that this is what the
transmitter intended to send. On the other hand, consider the case where only
some subset of strings are valid. We know that these are the only codewords
the transmitter would send us. If we receive one of these valid codewords, then
we assume there have been no errors, so that the bits received are exactly the
ones that were sent. If we receive an invalid string, then we know that an error
occurred.

For example, consider the case of 2 message bits and one even parity check
bit, resulting in codewords with 3 bits. The codeword 101 is valid since it has
even parity, while the codeword 001 is invalid since it has odd parity. Out of the
8 strings with 3 bits, only 4 of them are valid codewords. We should expect this
since we started with only 2 message bits, which means there are only 22 = 4
distinct messages that can be represented. Each valid codeword corresponds to
one of these messages. This is depicted in Figure 10.8.

This view also frees us from thinking of the bits as either message bits or
check bits. The point is there are 4 valid messages, which might correspond to
00, 01, 10, and 11, or more generally just four symbols s1, s2, s3, s4. Either way,
we transmit 2 bits. Separating the bits into message bits versus check bits isn’t
necessary. In fact, it’s much more general to not think in this way. A “code” is



10.8. VALID CODEWORDS AND INVALID STRINGS 15

Valid Codewords

Symbol 2 Bit Messages Check bit Codewords
s1 0 0 0 0 0 0
s2 0 1 1 0 1 1
s3 1 0 1 1 0 1
s4 1 1 0 1 1 0

Other (Invalid) Codewords
0 0 1
0 1 0
1 0 0
1 1 1

Figure 10.8:

Picking Codewords

s1 000
s2 001
s3 010
s4 100

s1 000
+error 1

001

Result looks
like code for s2

Figure 10.9:

then just a subset of strings that we call valid codewords and that correspond to
messages. The other strings are invalid. How we arrived at the valid codewords
(whether by parity check bits or some other way) doesn’t matter.

Notice that just picking any 4 valid codewords is not good enough to guar-
antee single error detection. We need to choose them cleverly. For example,
suppose of the 8 strings, we chose 000, 001, 010 and 100 as the valid codewords
and the others as invalid. These are shown in Figure 10.9. If 000 were trans-
mitted but an error occurred and we received 001, instead of detecting the error
we would erroneously assume that 001 was the transmitted message (received
without error). In some sense, to detect or correct errors, the valid codewords
need to be “far apart”. How to formalize this is discussed in the next section.



16 CHAPTER 10. INFORMATION PROTECTION

10.9 Hamming Distance

The reason the example above fails to be a good code (i.e., doesn’t allow even
single error detection) is that the valid codewords are not “spread out” enough.
Because they are too “close” to each other, a single error can take us from one
valid codeword to another valid codeword, thereby preventing any type of error
detection.

Formalizing the notion of “distance” between codewords will let us see ex-
actly what condition the valid codewords need to satisfy to allow single error
detection. It will also let us address higher levels of protection, both detection
and correction.

Definition (Hamming Distance). Given two strings of equal length, the
Hamming distance between them is defined to be the number of bits on which
they disagree.

The reason this is the proper notion for us is that each error changes one
bit, so it moves a string by Hamming distance 1. Two errors result in a string
that’s Hamming distance 2 away from the original, and so on.

If two valid codewords are Hamming distance 1 apart, then a single error in
the appropriate bit will take us from one valid codeword to another valid code-
word, making detection of the error impossible. We see that to allow single error
detection, there must be a distance of at least 2 between any valid codewords.
Note the emphasis on “any”. Even if there are just two valid codewords with
distance 1 between them with all the others far apart, we still cannot claim the
code will detect single errors. Remember, to make this claim we need to detect
every single error, no matter which codeword was originally sent. This leads to
the following definition.

Definition (Distance of a Code). Given a code (i.e., a set of valid code-
words of equal length), the distance of the code is defined to be the minimum
Hamming distance between any two valid codewords.

To allow single error detection, we see that the distance of the code must be
2, i.e., all valid codewords must be be at least distance 2 apart.

Now, let’s think about what is needed in order to correct errors. Remember
that we assume a valid codeword is sent from the outset. If we receive an invalid
string, we know that an error must have occurred. But, how should we go about
trying to correct the error?

What “correcting” the error means is that given the observed invalid string,
we find the original valid codeword that was sent. The obvious, and only rea-
sonable, guess is to choose that valid codeword that is closest to the observation,
assuming there is a unique closest valid codeword. We’ll be able to recover the
original codeword this way as long as after the errors, the result is still closer to
the original than to any other valid codeword.



10.9. HAMMING DISTANCE 17

For example, if the distance of the code is 3 then all valid codewords are at
least distance 3 apart. In this case, even after a single error, the result will still
be closer to the original codeword than to any other valid codeword. Hence,
we will be able to correct the error. However, we will not be able to detect
double errors with a distance of three. If two valid codewords are a distance 3
apart, then certain double errors will cause the received bits to end up closer
to a different valid codeword than the original. We’ll think there was a single
error and improperly “correct” this. This is depicted in Figure 10.10.

Valid
Codeword

0000

Valid
Codeword

01110001 0011

Invalid
Codeword

Invalid
Codeword

Distance = 3

Figure 10.10: Distance 3 code.

To detect double errors and correct single errors, we will need a distance
of 4. In this case, single errors will get corrected as before. A double error
will leave us equally distant (distance 2) between two valid codewords, and so
we will know there was a double error, although we won’t know which was the
message transmitted. This is depicted in Figure 10.11.

Valid
Codeword

0000

Valid
Codeword

11110001 0011

Invalid
Codeword

Distance = 4

Invalid
Codeword

Invalid
Codeword

0111

Figure 10.11: Distance 4 code.

A distance of 5 allows double error correction. A distance of 6 allows double
error correction and triple error detection. A little thought shows that to correct
k errors we need a distance of 2k+1. To correct k errors and detect k+1 errors
we need a distance of 2k + 2. Equivalently, if d is the distance of the code, then
we can correct bd−1

2 c errors and can detect bd
2c errors, where bxc denotes the

greatest integer less than or equal to x.


