Continuous-time Delta Function (Dirac delta function)

Not as straightforward as the discrete-time delta function
(Kronecker delta function)

$$
1_{[0]}[n]=\delta[n]= \begin{cases}1, & n=0 \\ 0, & \text { else }\end{cases}
$$

$\delta(t)$ is not actually a function.
We pretend it is and define how it behaves under the integral.

Define : $\quad \int_{-\infty}^{\infty} \delta(t) f(t) d t=f(0)$ if f is continuous at $t=0$.
Shifting Property: $\quad \int_{-\infty}^{\infty} \delta(t-T) f(t) d t \quad \tau=t-T$

$$
=\int_{-\infty}^{\infty} \delta(\tau) f(\tau+T) d t=f(T) \quad \text { if } f(t) \text { is }
$$

 continuous at $t=T$

So what is $\int_{-\infty}^{\infty} \delta(t) d t ?=1$

1. 2. Ln... from $1,0(T)$

Very different from $1_{\text {\{oj }}(T)$

Delta function like a short pulse:

This function $\delta_{\Delta}(t)$ behaves like $\delta(t)$ if Δ is small.
Precisely: $\quad \lim _{\Delta \rightarrow 0} \int_{-\infty}^{\infty} \delta_{\Delta}(t) f(t) d t=f(0)$ if $f(t)$ is continuous at $t=0$.

Tempting to say $\lim _{\Delta \rightarrow 0} \delta_{\Delta}(t)=\delta(t)$
Not true: $\quad \lim _{\Delta \rightarrow 0} \delta_{\Delta}(t)= \begin{cases}0, & \forall t \neq 0 \\ \infty, & t=0\end{cases}$
Move importantly, the function does not converge in L_{2}
Behavior under the integral converges:
Mathematical precision: $\int d \mu \longleftarrow$ measure

It is convenient to interchange:

$$
\begin{aligned}
& \delta(t-T) f(t)=\delta(t-T) f(T) \\
& \int^{\infty} \downarrow d t=f(T)=\int \downarrow d t
\end{aligned}
$$

$$
\int_{-\infty}^{\infty} \downarrow d t=f(T)=\downarrow \int \downarrow d t
$$

$$
\begin{aligned}
\delta(a t)=\frac{1}{|a|} \delta(t) \quad \text { Check: } \quad & \int_{-\infty}^{\infty} \delta(a t) d t \quad \tau=a t \\
& \frac{1}{|a|} \int_{-\infty}^{\infty} \delta(\tau) d \tau=\frac{1}{|a|} \\
\int_{-\infty}^{\infty} \delta(a t) f(t) d t & =\frac{1}{|a|} \int_{-\infty}^{\infty} \delta(\tau) f\left(\frac{\tau}{a}\right) d \tau=\frac{1}{|a|} f(0)
\end{aligned}
$$

$\xrightarrow[\text { Scale horizontally of }]{ } \delta \delta(3 t-3)$
by factor 3.
3.

Check: $\delta(3 t-3)=\delta(3(t-1))$

$$
=\frac{1}{3} \delta(t-1)
$$

What about integrating over a restricted set.

$$
\int_{A} \delta(t) f(t) d t=\int_{-\infty}^{\infty} \delta(t)\left(f(t) 1_{A}(t)\right) d t
$$

eg. $\quad \int_{a}^{b} \delta(t-T) f(t) d t=\left\{\begin{array}{cl}f(T) & \text { if } \quad T \in(a, b) \text { else } \begin{array}{c}\text { Delta functions in the } \\ \text { integration } \\ \text { interval are } \\ 0,\end{array} \text { ult matter. }\end{array}\right.$ \leftarrow undefined if right on the edge

$$
=\int_{-\infty}^{\infty} \delta(t-T)(f(t)(u(t-a)-u(t-b))) d t
$$ or f is discontinuous.

What is $\int_{-\infty}^{\dagger} \delta(\tau) d \tau$?

$$
\begin{array}{r}
=u(t) \\
u^{\prime}(t)=\delta(t)
\end{array}
$$

This gives us a way of talking about derivatives at discontinuities
What is the energy of $\delta(t)$?

$$
E\left\{\delta_{\Delta}(t)\right\}=\frac{1}{\Delta}
$$

We do not have a way to deal with products of delta functions.
But we have a trick for convolution.

Convolution:
Let $x[n]$ and $y[n]$ be DT signals:

$$
(x * y)[n]=\sum_{k=-\infty}^{\infty} x[k] y[k-k]
$$

Let $x(t)$ and $y(t)$ by CT signals:

$$
(x * y)(\tau)=\int_{-\infty}^{\infty} x(\tau) y(1-\tau) d \tau
$$

We care about convolution because of $L T$ I systems.
The behavior of an LTI system H is completely specified by an impulse response $h(t)$:

$$
H[x(t)]=(x * h)(t)
$$

Equalently

$$
\xrightarrow{x(t)} \xrightarrow{(x * h)(t)}
$$

What happens in this case?

$$
h(t)
$$

$$
(\delta * h)(t)=\int_{-\infty}^{\infty} \delta(\tau) h(t-\tau) d \tau
$$

$$
=h(t)
$$

This motivates us to call $h(t)$ the impulse response.
A common abuse of notation:

$$
(x * y)(t) \text { written as } x(t) * y(t)
$$

- Reason this is convenient: We can concisely write convolutions of manipulated signals

$$
\text { ecg. } x(t-T) * y(3 t)
$$

Without this notation:

$$
\begin{gathered}
x_{2}(T)=x(-T) \\
y_{2}(t)=y(3+) \\
\left(x_{2} * y_{2}\right)(t)
\end{gathered}
$$

- Reason this is confusing: Convolution is a function of the entire signal, not just at some

Verify CT Convolution:

$$
\begin{aligned}
H(x(t)) & =H\left(\int_{-\infty}^{\infty} \delta(\tau-t) x(\tau) d \tau\right) \\
& =H\left(\int_{-\infty}^{\infty} \delta(t-\tau) x(\tau) d \tau\right) \\
& =\int_{-\infty}^{\infty} x(\tau) H(\delta(t-\tau)) d \tau \\
& =\int_{-}^{\infty} x(\tau) h(t-\tau) d \tau
\end{aligned}
$$

Linearity
Time invariance.
$=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \quad$ Time invariance.

Convolution Commutes:

$$
x * y=y * x
$$

