ELE 301 Signals and Systems Sept. 19, 2011 Handout #1

Homework #1 Due Sept. 22

- 1. Complex numbers polar. Compute the magnitude and phase of the complex numbers:
 - a. 3 + 2i
 - b. 1 + i
 - c. $e^{2-i\pi}$
- 2. Complex numbers rectangular. Compute the real and imaginary parts of the complex numbers:
 - a. e^{i} b. $e^{it}(\cos(3t) + \sin(2t))$ (t is real) c. 1/(1+i)
- Energy. What is the energy of these signals (where t is the independent variable):
 a. x(t) = Ae^{-at}u(t) with a > 0.
 - b. The unit area rectangular pulse of width a, $\Delta_a(t)$.
- 4. *Power.* What is the power of these signals:
 - a. $x(t) = A_1 e^{i\omega t} + A_2 e^{-i\omega t}$. b. $x(t) = \sum_{k=-N}^{N} A_k e^{i\omega_0 kt}$.
- 5. Even and odd parts. Find the even and odd decomposition of this signal:

6. Time shifting and scaling. Given the signal x(t) shown below

draw the following signals:

- a. x(-2(t-1))
- b. x(t/2 + 1/2)
- 7. If y(t) is an even function, and y(t-1) is also even, is y(t) periodic?
- 8. A signal y(t) is periodic with fundamental period T_0 , and is the sum of two other signals

$$y(t) = x_1(t) + x_2(t).$$

Must $x_1(t)$ and $x_2(t)$ both be periodic?

- 9. Assume that the signal x(t) is periodic with period T_0 , and that x(t) is odd (*i.e.* x(t) = -x(-t)). What is the value of $x(T_0)$?
- 10. Two continuous-time sequences $x_1(t)$ and $x_2(t)$ are periodic with periods T_1 and T_2 . Find values of T_1 and T_2 such that $x_1(t)+x_2(t)$ is aperiodic.
- 11.Sketch

$$x(t) = \frac{1}{\sqrt{t}}u(t-1)$$

and classify it as an energy or power signal or neither.

12. For the waveform x(t) plotted below,

evaluate and draw the function

$$y(t) = \int_0^t x(\tau) d\tau$$

The impulses are negative, and have strength 1. What would you name this waveform?

13. Evaluate these integrals

(a)
$$\int_{-\infty}^{\infty} f(t+1)\delta(t+1) dt$$

(b)
$$\int_{-\infty}^{\infty} e^{j\omega T} \delta(t) dt$$

(c)
$$\int_{0}^{\infty} f(t) \left(\delta(t-1) + \delta(t+1)\right) dt$$

(d)
$$\int_{-\infty}^{\infty} f(\tau)\delta(t-\tau)\delta(t-2)d\tau.$$