Homework \#1

Due Sept. 22

1. Complex numbers - polar. Compute the magnitude and phase of the complex numbers:
a. $3+2 i$
b. $1+i$
c. $e^{2-i \pi}$
2. Complex numbers - rectangular. Compute the real and imaginary parts of the complex numbers:
a. e^{i}
b. $e^{i t}(\cos (3 t)+\sin (2 t))(t$ is real $)$
c. $1 /(1+i)$
3. Energy. What is the energy of these signals (where t is the independent variable):
a. $x(t)=A e^{-a t} u(t)$ with $a>0$.
b. The unit area rectangular pulse of width $a, \Delta_{a}(t)$.
4. Power. What is the power of these signals:
a. $x(t)=A_{1} e^{i \omega t}+A_{2} e^{-i \omega t}$.
b. $x(t)=\sum_{k=-N}^{N} A_{k} e^{i \omega_{0} k t}$.
5. Even and odd parts. Find the even and odd decomposition of this signal:

6. Time shifting and scaling. Given the signal $x(t)$ shown below

draw the following signals:
a. $x(-2(t-1))$
b. $x(t / 2+1 / 2)$
7. If $y(t)$ is an even function, and $y(t-1)$ is also even, is $y(t)$ periodic?
8. A signal $y(t)$ is periodic with fundamental period T_{0}, and is the sum of two other signals

$$
y(t)=x_{1}(t)+x_{2}(t) .
$$

Must $x_{1}(t)$ and $x_{2}(t)$ both be periodic?
9. Assume that the signal $x(t)$ is periodic with period T_{0}, and that $x(t)$ is odd (i.e. $x(t)=$ $-x(-t))$. What is the value of $x\left(T_{0}\right)$?
10.Two continuous-time sequences $x_{1}(t)$ and $x_{2}(t)$ are periodic with periods T_{1} and T_{2}. Find values of T_{1} and T_{2} such that $x_{1}(t)+x_{2}(t)$ is aperiodic.
11.Sketch

$$
x(t)=\frac{1}{\sqrt{t}} u(t-1)
$$

and classify it as an energy or power signal or neither.
12.For the waveform $x(t)$ plotted below,

evaluate and draw the function

$$
y(t)=\int_{0}^{t} x(\tau) d \tau
$$

The impulses are negative, and have strength 1 . What would you name this waveform?
13.Evaluate these integrals
(a) $\int_{-\infty}^{\infty} f(t+1) \delta(t+1) d t$
(b) $\int_{-\infty}^{\infty} e^{j \omega T} \delta(t) d t$
(c) $\int_{0}^{\infty} f(t)(\delta(t-1)+\delta(t+1)) d t$
(d) $\int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) \delta(t-2) d \tau$.

