
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ELE 301 Fall 2011
Laboratory No. 1

1 Summary

There are two objectives to this lab: (a) to practice some basic MATLAB commands ,
and (b) to become familiar with the generation and display of simple signals in MATLAB.
During the lab you will use MATLAB to generate and listen to some simple audio frequency
tones.

2 Representing Signals in MATLAB

2.1 Sampling

To deal with continuous time signals we will have to work with samples of the signals. Let
x(t), t ∈ [0, T], be a continuous time signal defined over the time interval [0, T]. Fix an
integer N > 1 and set ∆ = T/N . Then provided N is sufficiently large the signal x can
be adequately represented by the set of N uniformly spaced samples s(k) = x(tk) where
tk = k∆, k = 0, 1, . . . , N − 1.

The sampling frequency in the above representation is Fs = 1/∆ = N/T . Roughly, Shan-
non’s sampling theorem says that if the sample frequency is more than twice the highest
frequency present in the signal, then the samples adequately represent the original signal.
(We will do more on this later.)

A sampled signal can be stored as the elements of a 1×N matrix. For example, the signal
x(t) = sin(2t), t ∈ [0, 10], can be represented in MATLAB as a 1×N matrix as follows:

Ts=0.1;
N=100;
w0=2;
t=(0:1:N-1)*Ts;
x=sin(t*w0);

Here, Ts is the intersample time ∆ (So 1/Ts is the sample frequency); N is the total number
of samples; w0 is the frequency of the sine wave in radians; t is a 1×N matrix indexed from
1 to N containing the sample times 0, Ts, 2Ts, ... (N-1)Ts; x is a 1×N matrix containing
the samples of the signal sin(2t) at the sample times.

2.1.1 Plotting a signal

You can plot the signal with the commands:

plot(t,x);
grid
xlabel(’time - secs’)
ylabel(’signal x’)
title(’Plot of x vs t’)

This yields the plot shown in Figure 1.

You can also use the plot command to plot several signals on the same graph and you can
control the colors of the lines as well as their type. For example,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Example of a simple MATLAB plot

plot(t,x,’-’,t,y,’--’);
grid
xlabel(’time - secs’)
ylabel(’signal x’)
title(’Plot of x and y vs t’)

will plot the signals x and y on the same graph. The first signal will be plotted with a solid
line and the second signal will be plotted in a dashed line. Use the help facility to learn all
the color and line type controls.

Sometimes you want to plot more than one signal on the same page but on different graphs.
In this case you can use the subplot command to set up an array of plots. For example,

subplot(2,1,1), plot(t,x,’g’);
grid
xlabel(’time - secs’)
ylabel(’signal x’)
title(’Plots of x and y’)

subplot(2,1,2), plot(t,y,’r’);
grid
xlabel(’time - secs’)
ylabel(’signal x’)

will plot the signals x and y on a 2 by 1 grid of separate plots. The first signal will be
plotted in a green line and the second in a red line.

You can also plot each group of signals on a completely new page using the figure command.
For example,

figure (1)
plot(t,x);
grid
xlabel(’time - secs’)
ylabel(’signal x’)
figure(2)
plot(t,y);
grid
xlabel(’time - secs’)
ylabel(’signal y’)

will plot the signal x on the first figure window and the signal y on the second figure window.

2.1.2 Listening to a signal

The command sound(x,Fs) will output the signal x with sample frequency Fs to the com-
puter sound system. This works fine for listening to short signals but is not of high quality.

A better but slower method is to first save the signal as a .wav file (a microsoft format for
sound files), and then listen to the signal with a separate audio player program. This will
yield much better quality reproduction. We will do this in Lab two.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2.2 Writing an M-file

The best way to use MATLAB (and this is the way you should use it!) is to first write a
MATLAB program, called an M-file, and then type the name of the file at the MATLAB
prompt. This allows you to make changes, fix bugs, etc., in an efficient manner. Once you
have a correct program you can use it just like a simple MATLAB command. You can even
call your M-files from within other M-files.

To write a M-file you use any text editor to create a file containing MATLAB commands
and then store the file as an ASCII file with a .m extension. If you pull down the file menu
in MATLAB you can start the editor directly from the menu. Of course your M-files have
to be stored in a location that is in the MATLAB path so that MATLAB knows where to
look for them. By default, MATLAB always looks first in the working directory. So if you
store your M-files in your working directory, MATLAB will always find them. If you want to
call an M-file from another directory, then you have to add that directory to the MATLAB
Path. You can do this with the commands:

>>P=path;
>>path(P,’E:\userid\path_to_file’);

If MATLAB encounters a % symbol on any input line it ignores the rest of that line. So the
% symbol can be used to add comments to your programs.

A simple program might look like this:

clear % clear memory
clf reset % clear all figures

T=10; % signal duration
Fs=8000; % sampling frequency
t=0:1/Fs:T; % time axis

x=exp(-2*t).*sin(2*pi*f*t);
plot(t(1:n),x(1:N),’r’)
grid
xlabel(’time-secs’)
ylabel(’signal value - volts’)
title(’A Plot of a Simple Signal’)

sound(x,Fs) % play the signal

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ELE 301
Laboratory No. 1

3 Lab Procedure

This part of the handout needs to be completed and handed in.

3.1 Task 1: Pure Tones

The musical notes of the western music scale are grouped into octaves with each octave
containing 12 notes. The octave containing middle C covers the frequency range from 220Hz
to 440Hz. Within each octave the notes are logarithmically spaced so that jumping one
octave doubles the frequency. Thus the frequency of each note is 21/12 times the frequency
of the note below it. The frequencies of the notes in the middle C octave are shown in table
1.

A 220Hz

As 21/12*A ≈ 233Hz

B 21/12*As ≈ 247Hz

C 21/12*B ≈ 262Hz

Cs 21/12*C ≈ 277Hz

D 21/12*Cs ≈ 294Hz

Ds 21/12*D ≈ 311Hz

E 21/12*Ds ≈ 330Hz

F 21/12*E ≈ 349Hz

Fs 21/12*F ≈ 370Hz

G 21/12*Fs ≈ 392Hz

Gs 21/12*G ≈ 415Hz

Figure 2: Table 1.

A signal model for a pure tone of frequency f Hz is the sinusoidal signal x(t) = A sin(2πft+
φ). Here A is the amplitude of the tone, f is the frequency in Hz, 2πf is the frequency in
rad/sec, and φ is the phase.

1. Write an M-file called tone.m to generate a pure tone of 3 secs duration at middle
C. Use a sampling frequency 8 KHz. Your program should play the signal through
the sound system using the sound command and it should plot the first N signal
samples vs time (use N=300). Start your program by clearing the workspace and
then assign values to the following variables:

Fs - sampling frequency in Hz
f - tone frequency Hz
w - tone frequency rad/sec
T - duration of signal
t - vector of sample times
Amp - amplitude of tone
ph - phase of tone
x - the vector of signal values
N - no. of samples to be plotted

Make sure your plot displays a grid, has the axes correctly labelled, and is given a
title.

2. What do you get if you try to plot to whole signal vs time. Explain.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3. How does changing the value of Amp effect the sound of the signal?

4. How does changing the value of ph effect the sound of the signal?

5. What happens if you decease the sampling frequency to 1 KHz? Is this still theo-
retically adequate? Does it drastically alter the quality of the results?

6. Demonstate your program to the TA and get the TA to grade it. Congratulations,
you have just completed a working MATLAB program.

3.2 Task 2: Chords

Now on to bigger and better programs.

One of the most fundamental operations on signals is signal addition or superposition. This
simply corresponds to combining signals by adding their values at each time. For example,
a musical chord results when several (appropriate) notes are played concurrently. The
perceived signal is the sum of the individual signals. In the case of K notes (K is usually
3), the composite signal can be written as

x(t) =

K∑
n=1

An sin(2πfnt+ φn)

Modify your program tone.m so that it will generate K single tone signals each with its own
frequency, amplitude and phase. This is simple to do: just change the assignment statement
for Amp, ph, and f to be vector assignments instead of constants, and generate the signals
as the inner part of a loop (if you are clever you can do it without the loop). Your program
should plot each signal (the first N samples) vs time on the same page but on different
graphs and in different colors, and play each signal in succession. It should also plot on a
separate page the graph the sum of the signals and play this as well.

Demonstrate your program with K=3, Amp=[4 4 4], ph=[0 0 0], and f=[262 330 392]. This
is the C Major chord. The TA will give you a grade for this program.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3.3 Task 4: Harmonics

Lets continue with the idea of signal superposition to show that complex signals can be
constructed in this fashion.

When a particular note is played on a musical instrument not only is the fundamental
frequency (tone) generated but also higher harmonics of the fundamental, i.e., pure tones
at the frequencies 2f, 3f, 4f, These harmonics give the instrument a richer sound.

1. Copy your M-file tone.m into a new file harmon.m and modify the new file to
generate a signal of 1.5 seconds duration that is the sum of the tone middle C and
its first 10 harmonics. Use a sampling frequency of 16 KHz. Allow for the possiblity
that the harmonics have different amplitudes and phases. You can do this by using
one matrix to represent the amplitudes and another to represent the phases of the
component signals.

Your program should:

• plot the pure tone and the sum of the tone and its harmonics on the same
graph vs time (again just the first N samples). Remember to label the axes
and the give the plot a title.

• play both signals using the sound command.

• play a signal that consists of the pure tone for 1.5 secs concatenated with the
tone plus harmonics for 1.5 secs, concatenated with just the harmonics for 1.5
secs. This will allow you to hear the effects of the harmonics very clearly. Can
you tell the pitch with just the harmonics? Try dropping the first few harmonic
as well, can you still tell the pitch? Can you suggest why this may be so?

You can experiment with different amplitudes and phases to see the effect on the
composite signal appearence and sound. Demostrate you program to the TA using

Amp = [1 0 1/3 0 1/5 0 1/7 0 1/9 0]/pi

Ph = (pi/2)*[1 1 1 1 1 1 1 1 1 1]

2. In this case what are the theoretical constraints on the sampling frequency?

3.4 Task 4: Phase Error

The human ear is remarkably tolerant of differences in the phase of pure tones. To investigate
this effect, try this experiment. The program randph.m generates and plays two signals.
First it generates a signal at the frequency of middle C with ten harmonics. Then it generates
a second signal using the same harmonic amplitudes but the phases are random numbers
in the range [−π, π]. You can do this with the command rand. Each time rand is called it
generates a random number between 0 and 1. Both signals are plotted on the same graph
so that you can see the effect of the random phase. The program then randomly selects
one of the signals and plays it. It then waits 4 seconds, again randomly selects a signal and
plays it. It then asks you to say if the two signals it played were the same or different.

Try it out - see how many correct answers you can give on ten successive attempts. Write
the outcome of each of your attempts here:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

What conclusion can you draw about the tolerence of the human ear to differences in the
phase of harmonic components?

7

