
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ELE 301, Fall 2010

Laboratory No. 2

1 Background

The objective of this lab is to illustrate the fact that complex signals can be synthesized
from rather simple signals by the use of just a few elementary signal operations: envelope
modulation, time shifts, and superposition (addition). We will use the application of music
synthesis to explore these ideas in an interesting and fun context.

You will write a MATLAB program that inputs the score of a short piece of classical mu-
sic (in more or less standard musical notation) and synthesizes a time sampled waveform
corresponding to the specified music.

1.1 .wav files

In order to convert and save the matlab digital audio signal in .wav format use the following
command

wavwrite(s,fs,N, ’e:\pathname\filename’); % save s in .wav file format
% with quantization to N bits.

This command quantizes values in s to N bits and then together with the sampling fre-
quency fs converts the signal into .wav format and saves it to the file ”filename” on drive
”e:” and path ”pathname”. You should store files in your home directory or a subdirectory
of your home directory. You can then listen to the signal by starting the audio player and
opening this file.

1.2 Music Synthesis

Figure 1: Morning Mood

The first few bars of Morning Mood by E. Grieg are shown in Fig. 1. The position and note
value of each note indicates the frequency, and duration of the waveform or signal associated
with that note and the order of the notes indicates timing.

Suppose that a single note of frequency f , duration d and unit amplitude played at time
0 yields the waveform wf,d(t). Let the frequency, duration and amplitude of the jth note
in the above score be denoted by fj , dj and Aj respectively. Then we can construct the
waveform described by the score as the sum:

m(t) =
M∑

j=1

Ajwfj ,dj
(t− τj) (1)

were τj is the time at which the jth note is played. The music is thus the sum, or superpo-
sition, of the all of the notes played at their appropriate times.

In principle, we can attempt to automate this process on a computer as follows: construct
the waveforms wf,d(t) for each note in the score; then form the sum (1) using the appropriate
delays and amplitudes as indicated in the score.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Of course we have to work with sampled versions of the waveforms. So the actual syn-
thesis will be done using discrete-time signals intended to model sampled versions of the
continuous-time waveforms.

1.3 Notes

Musical notation indicates the fundamental frequency of each note by its vertical location
on the musical staff, and its duration by the note type: whole, half, quarter, eighth, etc. The
musical notes are grouped into octaves with each octave containing 12 notes. The octave
containing middle C covers the frequency range from 220Hz to 440Hz. Within each octave
the notes are logarithmically spaced so that jumping one octave doubles the frequency. Thus
the frequency of each note is 21/12 times the frequency of the note below it. The frequencies
of the notes in the middle C octave are shown in Figure 2.

A 220Hz
As 21/12*A ≈ 233Hz
B 21/12*As ≈ 247Hz
C 21/12*B ≈ 262Hz
Cs 21/12*C ≈ 277Hz
D 21/12*Cs ≈ 294Hz
Ds 21/12*D ≈ 311Hz
E 21/12*Ds ≈ 330Hz
F 21/12*E ≈ 349Hz
Fs 21/12*F ≈ 370Hz
G 21/12*Fs ≈ 392Hz
Gs 21/12*G ≈ 415Hz

Figure 2: Notes in the middle C octave.

1.4 Representing the score

We need to select a numerical representation for the note frequencies and durations. For
the durations we will use 1 to represent a whole note, 2 to represent a half note, 4 for a
quarter, and 8 for an eighth.

The frequency information can be represented in MATLAB be defining a variable for each
note frequency: s=2(̂1/12); A=220; As=A*s; B=As*s; C=B*s; ... etc. This has already
been done for you and is available in the file notes.m. This M-file defines variables cor-
responding to three octaves. The variable names are: A0, As0, B0, C0, Cs0, D0, Ds0,
E0, F0, Fs0, G0, Gs0 for the octave below middle C; A, As, B, C, Cs, D, Ds, E, F,
Fs, G, Gs for the octave containing middle C; and A2, As2, B2, C2, Cs2, D2, Ds2,
E2, F2, Fs2, G2, Gs2 for the octave above middle C.

Be careful: do not use these variable names in your program for other purposes. In
particular Fs has been used for the note F sharp, so you cannot use it for the sampling
frequency.

We can represent the first few bars of Morning Mood in MATLAB by 3 matrices and a
scalar as follows:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

%% MUSIC: MORNING MOOD
%% ————————————————–
% nf=Notes to play
% nd=Duration of each note: 8,4,2,1= 1/8,1/4,1/2,1
% na=Relative amplitude of each note
% TD=Time duration of one whole note in secs
nf=[G E D C D E G E D C D E G E G A2 E A2 G E D C ];
nd=[4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4/5];
na=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ];
TD=1.5;
%% ————————————————–

So nf(j) is the frequency of the jth note, TD/nd(j) is its duration in seconds and na(j) is
its relative amplitude.

1.5 Generating a note: the instrument

A primitive model for a note of frequency f and duration d is a sine wave of that frequency
and duration followed by a short period of silence. This can be written as the continuous
time signal

wf,d(t) = sin(2πft)(u(t)− u(t− d)), t ∈ [0, D]
where D is the total duration and d is the note duration.

The above model does not produce anything resembling realistic instrument sound. Real
instruments have at least two additional important characteristics. First, when a particular
note is played not only is the fundamental frequency is generated but also higher harmonics
of the fundamental. The amplitudes of the harmonics are usually significantly less than that
of the fundamental.

In addition to harmonics, the instrument also produces a characteristic note envelope. Figure
3 shows the waveform of actual piano notes. The signal envelope has a significant rise time
and a slower exponential-like decay. In the primitive model, the note envelope is just a
rectangular pulse u(t) − u(t − d). Producing a more realistic sound requires replace this
term by an envelope signal e(t).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3: Piano notes.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ELE 301
Laboratory No. 2

2 Lab Procedure

Several MATLAB .m files will be provided: notes.m, odetojoy.m, mornmood.m, and
furelise.m. The file notes.m contains the note definitions. Look in the file to see what
variables have been defined. The example program included at the end indicates how this
file could be used. The files odetojoy.m (short), mornmood.m (medium), and furelise.m
(long) are files defining musical scores. When you are working with scores start with short
ones first to test your program.

WARNING: Some programs you will write, although not very long, are complex and can
be memory hungry. Write the program in simple steps. Test each step before proceding to
the next, and use variables efficiently.

2.1 Task 1: Make a single note

Write three MATLAB programs that will generate a single note waveform of specified fre-
quency and duration. The first program is the master program, mkmusic.m, that will define
variables, and for the moment plot and play the result. The other two programs, myinst.m
and mknote.m, are called by the master program. The program myinst.m specifies the
instrument characteristics and the program mknote.m generates the actual note waveform.

Do this in the following sequence of steps:

1. Write the program mkmusic.m. This program should

• clear memory and figures.
• define the note frequency variables. This is easy: you can use the M-file
notes.m just like a regular matlab built-in command.

• call the program myinst.m (which you will write later) to define the instrument
variables and characteristcs.

• define the variables:

TD - the duration, in seconds, of one whole note.
nf - the frequency of the note to be played
nd - the duration (1, 2, 4, 8) of the note to be played
na - the amplitude of the note to be played
tt - the time vector for the note

For now just put in one note, so nf, nd and na will each have one entry.
• call the program myinst.m (which you will write later) to define the instrument

variables and characteristcs.
• call a program mknote.m (which you will write later) to generate the note

specified by frequency, duration and amplitude.
• Plot the note waveform vs time (for the single note)
• Play the note using the MATLAB sound command.

2. Write the program myinst.m to specify the instrument characteristics. This will
include the harmonic amplitudes for a note (relative to a unity amplitude note),
and the note envelope. Use the variables:

ha - for the harmonic amplitudes
env - for the note envelope

At first, assume that the instrument is primitive: it has no harmonics and its
envelope is just the pulse u(t)− u(t− d), where d is the note duration.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3. Write the program mknote.m that generates a note of frequency nf, duration nd
and amplitude na (with the instrument characteristics in ha and env, which for
now don’t matter) and returns it in the vector n. This will be very similar to the
program harmon.m that you wrote in Lab 1. You can make this program a function
or a script.

4. Test your programs by generating notes at middle C of durations 1, 1/2, 1/4 and
1/8, and unity amplitude. The sound output should be shorter for a 1/8 note (nd=8)
than for a 1/4 note etc.. Demonstrate your program to the TA before proceeding
further.

5. Once you have the above programs working you can experiment with instrument
sounds by varying the harmonic content and envelope shapes, i.e., by refining the
constants in your myinst.m program. Generally: more harmonics with larger ampli-
tudes give an organ-like sound, moderate harmonic content and an exponential-like
envelope will give a crude piano-like sound. Note that you could make the envelope
depend on the note duration. How?

When you are happy with your instrument sound, specifiy your harmonic amplitudes
and your selected envelope function(s) here:

Demonstrate your program to the TA. Then print out your programs and attach
them to this handout.

2.2 Task 2: Music

Now that you can make one note the next task is put the notes together to play an entire
score. While this is conceptually simple, obtaining and efficient implementation requires
thinking things through carefully.

The first step is to add a line to the mkmusic program to load the score variables. The
command odetojoy, for example, loads the score variables for the first few bars of Ode to
Joy. This will take the place of your definitions for the single note played in the previous
part of the lab.

Now one way to play the score is to add a loop that simply calls mknote for each note in
the score. Try this and play the result.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

You should detect two dawbacks to this approach: it sounds roughly like a one finger piano
player because there is too much delay between notes; and we are still using the low quality
MATLAB sound command.

To avoid using the sound command we want to generate the waveform for the entire score
first, save it as a .wav file, and then play it later with the windows audio player. This should
also solve the problem of excessive delay between notes.

We want to generate the waveform for the whole score using a discrete time version of
equation (1). In doing this we will allow the note waveforms to overlap so that we model
playing the next note while the previous one is still sounding. In principal this is easy:
generate each note one at a time in the correct order and then add it as a subvector in the
correct place to a big vector that represents the waveform for the entire score. The correct
place corresponds roughly to the value of τj in equation (1). The only tricky parts are:

1. Computing how long the big vector should be. This allows you to define it (and
hence reserve the required memory space) before the construction begins.

2. Keeping track of where the next note should be added into the big vector. (Use a
pointer?)

3. Avoiding running out of memory!

You need to think about the above items before coming to the lab.

1. Modify your program mkmusic.m to generate the waveform for the whole score and
then store your waveform as a .wav file to your directory. Use the windows audio
player to play it. (Note you can’t have the file opened by two programs at the same
time. So if your MATLAB program is to write to the file, then you must first close
it in any other program.)

2. Test your program on a short score first (e.g. odetojoy.m). Debug and then try
mornmood.m and furelise.m. Play your version of Für Elise for the TA.

3. Add reverberation by shifting the signal by various delays, scaling them with de-
creasing weights for longer delays and adding them to the original signal. Try to
find values that improve sound quality. Record them below:

4. Want to do more? You should be able to easily modify your music program to
synthesize a score with several voices. The files odeto2.m contains the notes for a
second voice for Ode to Joy. See if you can synthesize the music and play it.

6


