
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ELE 301, Fall 2011

Laboratory No. 5

It will behoove you to read this week’s and next week’s lab completely before you begin
coding.

1 Background

In this lab we will begin to code a Shazam-like program to identify a short clip of music
using a database of music. The basic procedure is:

1. Construct a database of features for each full-length song;

2. When a clip (hopefully part of one of the songs in the database) is to be identified,
calculate the corresponding features of the clip;

3. Search the database for a match with the features of the clip.

Like Shazam, the features for each song (and clip) will be pairs of proximate peaks in the
spectrogram of the song or clip. We start by finding the peaks in the (log) spectrogram;
plotting the locations of these peaks gives a “constellation map“. Each peak has a time-
frequency location (t, f) and a magnitude A. We then form pairs of peaks that are within a
pre-specified time and frequency distance of each other and record the details of these pairs
in the database. For example, if we obtained a pair (f1, t1) and (f2, t2), we might record
(f1, f2, t1, t2 − t1, A1, A2, songid). We don’t want to record all possible pairs of peaks; there
are far too many. We will explain shortly how to select the pairs.

Instead of recording (f1, f2, t1, t2 − t1, A1, A2, songid), we will discard the amplitudes and
just record (f1, f2, t1, t2 − t1, songid). The reason for this is explained in the paper: briefly,
the amplitude of a peak may not be robust to gain changes across frequency.

Each song is summarized (“fingerprinted”) by a (big) table of its extracted features, e.g.

f1 f2 t1 t2 − t1 songid
...

fj fk tj tk − tj songid
...

fm fn tm tn − tm songid

When we are given a clip to identify, we do the same feature extraction for the clip. The
result is a small table of clip features:

f1 f2 t1 t2 − t1
...

fj fk tj tk − tj
...

fm fn tm tn − tm

We do not know the start time of the clip within its corresponding song. The times tj that
appear in the clip table are relative to the start of the clip. The clip itself starts at some
unknown offset t0 from the beginning of the music. Finding a match to the clip in the data
base is a matter of matching the constellation map of the clip to the constellation maps of
the songs by effectively sliding the former over the latter until a position is found in which
a significant number of points match.

Using pairs of peaks as features gives us three quantities that we expect to be independent
of the unknown offset time: (f1, f2, t2 − t1). The song with the most triples (f1, f2, t2 − t1)
in common with the clip table is likely to be the source of the clip.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

2 Lab Procedure - MyShazam Part I

This week you will write a script make table that will take a song and construct a database
of features for that song. The script will do the following:

1. Read in the song using mp3read.

2. Average the two channels, subtract the mean, and downsample.

3. Take the (log magnitude) spectrogram of the song using spectrogram.

4. Find the local peaks of the spectrogram by using circshift in a loop.

5. Adaptively (not manually) threshold the result of step 5 to end up with peak rate
peaks/sec.

6. For each peak, find fanout pairs in the target window and add them to the table.

7. Plot the constellation map and draw lines connecting the pairs.

These steps are now explained in detail.

2.1 Reading an mp3 file: mp3read.m

In order to read an .mp3 file into MATLAB we will use the function mp3read.m from
Professor Dan Ellis, Columbia University. You need to put the files mp3read.m, mpg123.exe
and mp3info.exe into the same folder on your computer. To read an .mp3 file into MATLAB,
use the following command:

[y,fs]=mp3read(’file_name’);

This opens the file “file name.mp3”, decodes the file and returns the decoded signal in the
vector y. The sampling rate is stored in fs.

2.2 Preprocessing

Read in the .mp3 file, viva.mp3. The signal is actually from two channels, but for our
purposes we can combine them by taking the mean of the corresponding samples of the two
channels. Do this via the command y=mean(y,2) to average along the second dimension.
Now subtract off the mean of y to eliminate the potential horde of peaks at frequency f = 0.

Since fs is 44100 Hz, we have a lot more data than we need. Resample the signal at 8000
Hz using the command resample, as follows:

y=resample(y,new_smpl_rate,old_smpl_rate); % rates must each be integers.

This command performs an interpolation of the signal at the new sampling points and
returns the result.

2.3 Spectrogram

Now we want to construct the spectrogram of this signal. To do this, use the MATLAB
command spectrogram. It basically does what the spectrogram program you wrote in the
previous lab does (with the extra addition of windowing, which you don’t need to worry
about). Call it as follows:

[S,F,T]=spectrogram(y,window,noverlap,nfft,fs);

window is an integer that indicates the length of the chunks you want to take the fft of.
noverlap is the number of samples you would like to have as overlap between adjacent
chunks. nfft is the length of the fft you would like to take, which in our case can be the
same as window. Finally, fs is the sampling rate of the signal, in our case 8000 Hz. The
function returns the spectrogram in the matrix S with just the positive frequencies. The

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

frequency vector for the vertical axis is returned in F and the time vector for the horizontal
axis is returned in T.

Compute the spectrogram with window length 64 ms and an overlap of 32 ms. Be sure to
specify both these parameters as an integral number of samples. Plot the magnitude of the
spectrogram of the song with axes appropriately labeled.

It is common to study the log of the magnitude of the spectrogram. Why might this be a
good idea?

Plot the log of the magnitude of the spectrogram with axes appropriately labeled. We will
use the log magnitude spectrogram.

2.4 Spectrogram Local Peaks

Next, we find the local peaks of the spectrogram. A local peak has log magnitude greater
than that of its neighbors. One way to find the local peaks is to iterate through each point
in the spectrogram and compare the magnitude to the magnitude of each of the points in
the surrounding gs x gs grid. This can be done for all point at the same time by using the
command circshift. For example, if S denotes the log magnitude spectrogam, then the
code

CS=circshift(S,[0,-1]);
P=((S-CS)>0);

returns a boolean matrix P with entries 1 for the positions in S that are greater than their
neighbor immediately to the left (see help circshift for details). If you put this structure
in a loop, you can select the points in S that are greater than all of their neighbors in the gs
x gs grid, i.e. the local peaks. The location of these peaks are stored in a boolean matrix
P of the same size as S. Plotting P as an image will display the constellation map. Change
the colormap with the command:

colormap (1-gray);

which will display the entries where there are peaks as black pixels and the rest of the matrix
as white pixels.

Try several values for gs and plot the constellation map. Note the effect of changing gs.
Compute the constellation map for gs=9, i.e. 4 points in each direction. Calculate how
many peaks there are and record your answer below. How many peaks are there per second
on average?

2.5 Thresholding

We want to use only the larger peaks. Why? (Hint: think about the quality of the clip we
would like to identify)?

To select the larger peaks and also to control the average rate of peak section (peaks per
second), we have to do some sort of selection operation on the peaks. The simplest thing to
do would be to apply a fixed threshold to the detected peaks and keep only those above the
threshold. The threshold could be selected to yield (approximately) the desired number of
peaks.

Assume that we want approximately 30 peaks per second. Find a threshold which yields
that rate of peaks. Record the threshold value below along with the number of peaks kept.
Write a routine which will find some optimal threshold automatically instead of manually
doing it.

Again, display the constellation. Comment on the distribution of peaks. Is it uniform? Are
they closely packed? If so, is this a good thing?

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Alternatively, we can use an adaptive threshold, where we advance along the matrix in 1
second chunks of columns and adaptively threshold each of these chunks to approximately
get our 30 peaks per second. Try this if time permits.

If we were concerned about having peaks that were too close together, how could we thresh-
old so that we guarantee some separation between peaks? Concretely, outline a basic algo-
rithm which would accomplish this (you don’t have to code this).

2.6 Constructing the Table

As outlined in the preliminary material, we want to select pairs of peaks and record the
frequency of each peak, the time of the first peak and the time difference between the two
peaks.

A peak-pair must satisfy certain constraints: the second peak must fall within a given
distance from the frequency of the first peak and the second peak must occur within a
certain time interval after the first peak. We will also limit the number of pairs allowed to
form from a given peak, say to 3 (this is called the fan-out). So a peak located at (t1, f1),
can only be paired with peaks which have t1+∆l

t < t2 ≤ t1+∆u
t and f1−∆f ≤ f2 ≤ f1+∆f

for some ∆l
t, ∆u

t and ∆f . See Figure 2.7 for an example, where the box encloses the area
in which we are looking for peaks.

The command find is very useful.

Our objective is to select appropriate parameter values for ∆l
t, ∆u

t , ∆f and fanout, and
then record the 4-tuples (f1, f2, t1, t2 − t1) in a matrix. One can do this after selecting
the larger peaks as in the previous section. However, another interesting possibility is to
combine the selection of a subset of peaks with the selection of peak-pairs.

After you have produced your selection of pairs, display the constellation map and connect
the pairs listed in the table with line segments (use the command line).

Experiment with changing the fan-out for each peak and with changing ∆l
t, ∆u

t and ∆f .
Also try different lengths for window in the spectrogram. Note any significant findings.

2.7 Final Function

Now, combine everything into a function make table which puts all of these steps together.
It will take as input the song signal and it will return an npairs × 4 matrix which contains
in each row the 4-tuple corresponding to a peak pair:

f1 f2 t1 t2 − t1
...

fj fk tj tk − tj
...

fm fn tm tn − tm

When you are constructing this table, use the indices of the spectrogram as the values for
f and t instead of using the corresponding Hz and seconds values.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Spectrogram local peaks with target window for peak pairs

Time

F
re

qu
en

cy ∆t
u

∆t
l

Target window

2∆f
(f1,t1)

5


