
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ELE 301, Fall 2011

Laboratory No. 6 - MyShazam Part II

1 Background

From last week’s lab you should have a MATLAB function make table that takes as input
a clip and returns a table of peak pairs of the form:

f1 f2 tc1 tc2 − tc1
...

...
...

...
fj fk tcj tck − tcj
...

...
...

...
fm fn tcm tcn − tcm

Now we want to run make table on each song that we want to include the database and
produce a table for each. Each of these song tables will have the same form:

f1 f2 ts1 ts2 − ts1
...

fj fk tsj tsk − tsj
...

fp fq tsp tsq − tsp

If the clip comes from a particular song, we expect each entry in the clip table to have a
corresponding entry in the song table. In particular, if (f1, f2, t

c
1, t

c
2 − tc1) is an entry in the

clip table and (g1, g2, t
s
1, t

s
2− ts1) is its corresponding entry in the song table, then we should

have f1 = g1, f2 = g2, and tc2 − tc1 = ts2 − ts1 because these features are time shift invariant.
So using the triple (f1, f2, t

c
2− tc1) from a clip table entry is a good way to search for a match

from the set of song tables.

To make this process efficient, the song tables need to be combined to form our database of
song “fingerprints” and we need to form the database so that searches are fast.

1.1 Finding a Clip Match

To identify a clip, we run the function make table on the clip to generate a clip table of
peak pairs. Then we search the database for matches to each entry in the clip table. We
want to use the triples (f1, f2, t

c
2 − tc1) to search the database. What we need is a fast way

to determine if (f1, f2, t
c
2 − tc1) matches something in the database and if so, extract what

we know about that match.

To ensure fast database lookup we construct a hash table that is indexed by a simple hash
function of the triples (f1, f2, t2 − t1). Denote the hash function by h(f1, f2, t2 − t1). Think
of h(f1, f2, t1 − t2) as an integer (the hash) that indexes entries in a large table (called a
hash table). For each entry in the song tables, we place both the code name for the song
(songid) and the ts1 value at the location h(f1, f2, t

s
2 − ts1) in the hash table.

Then given a peak pair entry in the clip table, say (f1, f2, t
c
1, t

c
2−tc1), we look up the database

entry at h(f1, f2, t
c
2 − tc1). This entry is either empty (no match for the peak pair), or there

is one entry (ts1, songidk) giving us a songid and the time ts1 where this peak pair occurs in
the song, or there is a set of entries {(songidk, t

s
1k)}pk=1 one for each song that has a song

table entry of the form (f1, f2, t
s
1k, t

s
2k − ts1k, songidk).

All the matches from the clip table to the correct song should occur with the same difference
to = ts1− tc1, where ts1 is the time of the pair in the song, and tc1 is the time of the pair in the
clip. The time t0 = ts1 − tc1 is the offset in time we would need for the clip constellation to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

line up with the song constellation. This suggests that we find the songid that has the most
matches occurring with the same offset t0 and assert that our clip comes from that song, or
rank the matches by this criterion.

1.2 Noise and SNR

Once you have a working system, you will need to characterize its performance. One im-
portant metric is the performance with varying levels of noise added to the clip. We can
construct multiple clips from each song in the database and add noise to each. Then we
classify each clip with our algorithm and record the rate of correct classification for different
signal to noise ratios (SNRs). Ideally, at high SNR the classification is close to 100% correct
and it should degrade as the SNR decreases.

We define the SNR as:

SNRdB = 10 log10

Psignal

Pnoise

To measure signal power in MATLAB, you can take the mean of the square of the signal.
For 0-mean Gaussian noise with variance σ2, the power σ2.

2 Lab Procedure - MyShazam Part II

You will need to write a few different scripts. The following are suggestions for what the
structure of the scripts should be. Top-level script make database:

1. Name the directory where the .mp3s are located

2. Use getMp3List to obtain a list of songs

3. Call add to hash with the list of songs

Script add to hash: load current database (hash table) and songlist, add new songs, save
updated database and songlist.

1. Initialize HASHTABLE and SONGID matrices if they do not exist. If they do exist, load
HASHTABLE.mat and SONGID.mat using the command load.

2. For each song in the input list, first update SONGID then use the function make table
that you created last week to produce a table of 4-tuples (fs1 , f

s
2 , t

s
1, t

s
2 − ts1). For

each 4-tuple (fs1 , f
s
2 , t

s
1, t

s
2 − ts1), find the corresponding hash index using the hash

function: index=h(fs1 , f
s
2 , t

s
2−ts1). Store (ts1, songid) at HASHTABLE(index). Be sure

to handle collisions appropriately, as they will surely occur.

3. Save the updated HASHTABLE and SONGID using the save command.

Script myshazam: Take a clip and try to match it to one of the songs in the database.

1. Load HASHTABLE and SONGID that were constructed in the previous two scripts.

2. Run make table on the input clip to produce a table of 4-tuples.

3. For each 4-tuple (f c1 , f
c
2 , t

c
1, t

c
2 − tc1), compute h(f c1 , f

c
2 , t

c
2 − tc1), the hash index. For

each pair (ts1, songid) residing at that index (there could be none, or several if
collisions occurred there), store (ts1 − tc1, songid).

4. After going through the entire clip table, there will be a collection of (ts1− tc1) values
for each song in the database. The song that the clip matches will have a large
mode, or a spike in the histogram of (ts1 − tc1) values. Determine a match by using
hist or mode.

Some steps are now discussed in detail.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2.1 Constructing and Populating the Hash Table: add to hash

Since each frequency can be represented by a number from 0 to 255 (assuming for conve-
nience that we drop the last (highest) frequency bin) we can represent each frequency with
8 bits. Depending on how large a time window we allow for our target box, we can also
represent the time t2− t1 by a n bit number, for some small n. Therefore, we can construct
a simple hash function of the form:

h(f1, f2, t2 − t1) = (t2 − t1) · 216 + f1 · 28 + f2

(make sure that f1 and f2 range from 0 to 255 and not 1 to 256). Then, at each location you
will store the songid number and the value of t1 for the peak pair. There will be conflicts
(collisions) when populating the table. You need to come up with some appropriate scheme
to resolve them (e.g. separate chaining, linear probing, etc.). How big does your hash table
need to be? Also, how does the distribution of peaks together with your method of choosing
the peak pairs from within the target box affect the number of collisions?

Write a function add to hash which takes as its argument an array of the names of the songs.
It should then run make table on each of song and use the table produced to populate the
hash table. At the end of the function, save the hash table to HASHTABLE.mat using the
save command. You should also save an array of song titles to SONGID.mat. This will allow
you to use indices to refer to the songs instead of strings. As a general rule of thumb, it is
always a good idea to reserve space, and initialize values, for variables.

2.2 Finding a Match: myshazam

Next, write a function myshazam which takes in a clip and returns the song ID of the match,
if there is a match. To find a match, the function will have to construct the peak pair table
for the clip and then look up each entry in the hash table. The function should then find
the song ID which has the most pairs with matching t0 = ts1 − tc1, where ts1 is t1 for the pair
in the song and tc1 is t1 for the pair in the clip. If you draw a scatter plot of tc1 vs. ts1 for
each song in the database, the matching song should have a line of points.

When you are done, test your program out by excerpting a 10 second clip from one of the
files and running your match function on it. You can use mp3write to convert this clip as
an mp3 if you want. Have it draw the scatter plot of the tc1 vs. ts1 for the matching song.

How could you measure confidence in a classification?

Run the matching function on multiple clips from each song in the database (automate
this process, as it will be necessary for the next section) and record your correct correct
classification rate below:

2.3 Performance with Noise

To test performance in the presence of noise, loop over SNRdB=-15:3:15, as in Wang’s paper.
For each SNR add noise to each of your test clips with the appropriate power, where you
can generate a vector, length n, of 0-mean Gaussian noise with variance sigma^2 with the
following command:

noise=sqrt(sigma^2)*randn(n,1);

Obviously the noise power needed will depend on the power of the clip. For each fixed SNR
record the percentage of correct classifications. Plot the percentage of correct classifications
vs. SNR.

Do the above with clips of length 5, 10 and 15 seconds. How does the length of the clip
affect the correct classification rate?

Test your program on a bunch of clips corrupted with speach or some other form of noise,
how does it perform?

3


