- Mini (Rc /Over) View (CTFSDTFSCTFTDTFT)
- Where does the DFT come from?
- Sampling
- Aliasing

Pretend you doit know about the DFT "real time dona in"

Matlab time "
domain
"Mattab frequency
domain".

(1) relate to "real tine domain"?
(2) We de dune this?

(1) Need to know sampling freq f_{s} : $F_{s}=\frac{N}{T} \frac{\text { samples }}{\text { see }}$

(2) We need a way to take the fourier transform of a finite vector and end up with a finite vector CTFS

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{[k]} e^{j 2 \pi f k t} \quad X_{[k]}
$$ corresponds to $e^{j^{2 \pi} f_{0}^{l} 3 t}$ term \Rightarrow fe l $3 f_{0}$

DTFS
$x[n]$ perse $N \quad f_{0}=\frac{1}{N} \quad x[n]=\sum_{k=1}^{N} X[k] e^{j 2 \pi f_{0} k n}$

freqs: $f_{0} k, k=1, \ldots, N$ units: cycles sample

CTFT

freq: $a^{l l}$ unts? cy eles/sec

DTFT

$x[0]$

Possible candidates for modification: DTFS and DTFT
To use DTRS, we reed periodic signal, hut we just have To use DTRS, we
perrodie extersion:

frey: ${ }^{\text {all }}$
vans:
cy ckiv
sample sample
natiab vector priodic extenson
$x[n]$

$$
\tilde{x}[n] \quad f_{0}=\frac{1}{N}
$$

$\tilde{X}[k]$

So we might deffe DFT to be

To use DTFT;
we dorit need percodic extencion, but the spectrun is continoor so we need to sample it matiab veeter $x[n]$

$$
\frac{1 \prod_{i}}{12 \cdots N}
$$

So we might define DFT to be

$$
\begin{aligned}
& \text { Lo be } \\
& x[k]=X\left(\frac{k}{N}\right) \quad, \quad k=1, \ldots, N \quad\binom{r e n}{X(f)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \pi f_{n}}} \\
&=\sum_{n=-\infty}^{\infty} x[n] e^{-j 2 \pi\left(\frac{k}{N}\right) n} \\
&=\sum_{n=1}^{N} x[n] e^{-j 2 \pi \frac{k}{N} n}
\end{aligned}
$$

Exactly the same as when we used periodic extension + DTFS!!! (whorl $\frac{1}{N}$ tractor, $w+$
who cire who cares)

Sampling

one attempt

FAIL
anstur attempt:

FAIL

Turns out:
Gad these
since op.
t
Maker alost mare sense when we look at it in the trey domain-
Sampling period T. Sampling Frequent $F_{s}=\frac{1}{T}$.
sample wimp:

we doit actually sample this way, but lets yo with it for now

$$
\begin{aligned}
p(t) & =\sum_{n=-\infty}^{\infty} \delta(t-n T) \stackrel{F T}{\rightleftarrows} p(f)=F_{s} \sum_{k=-\infty}^{\infty} \delta\left(f-k F_{s}\right) \\
x_{p}(t) & =x(t)-p(t) \stackrel{F T}{\rightleftarrows} X_{p}(f)
\end{aligned}=X(f) * P(f) \quad=X(f) * F_{s} \sum_{k=-\infty}^{\infty} \delta\left(f-k F_{s}\right)
$$

$x(f)$

$p(t)$

$x_{p}(t)$

$p(f)$

$X_{p}(f)$

So how de we reconstruct $X(t)$?

So system is ${ }_{p e t}$

This is exactly $x(f)!!!$

when does this work? (when does $x_{r}(t)=x(t)$? ?
Problem if:

need $F_{s}>2 F_{m} \quad$ (W yquest rate!)

Aliasing Example

If $x(t)=\sin (2 \pi \cdot 3000 \cdot t), \quad x_{p}(t)=\sin (2 \pi \cdot 3000 t)$
If $x(t)=\sin (2 \pi \cdot 7000 t), x_{r}(t)=\sin (2 \pi \cdot 1000 t)$
$\binom{$ mathematical }{ demonstration }

$$
x_{p}(f)
$$

But we want to work with discrete tine

How dues DTFT of $x_{s}[n)$ compare do CTFT of $x_{p}(t)$?
DTFT of $X_{s}[n]$: $X_{s}(f)=\sum_{n=-\infty}^{\infty} X_{s}[n] e^{-j 2 \pi f n}=\sum_{n=-\infty}^{\infty} x(n T) e^{-j 2 \pi f_{n}}$
CTFT of $X_{p}(t): X_{p}(f)=\sum_{n=-\infty}^{\infty} x(n t) e^{-j 2 \pi f_{n} T}$

$$
\Rightarrow X_{s}(f)=X_{p}\left(\frac{f}{f}\right)=X_{p}\left(f \cdot F_{s}\right)
$$

$x(t)$

"real
 frequency

$$
\text { 人 }\left(\frac{\text { cocks }}{\text { sec }} \cdot \frac{1}{\text { sumples/see }}\right)
$$

