Lecture 2 ELE 301: Signals and Systems

Prof. Paul Cuff

Princeton University

Fall 2011-12

Cuff (Lecture 2)

01: Signals and Sy

Fall 2011-12 1 / 70

(何) くろう くろう

Models of Continuous Time Signals

Today's topics:

- Signals
 - Sinuoidal signals
 - Exponential signals
 - Complex exponential signals
 - Unit step and unit ramp
 - Impulse functions

Systems

- Memory
- Invertibility
- Causality
- Stability
- Time invariance
- Linearity

Sinusoidal Signals

• A sinusoidal signal is of the form

$$x(t) = \cos(\omega t + \theta).$$

where the radian frequency is ω , which has the units of radians/s.

Also very commonly written as

$$x(t) = A\cos(2\pi f t + \theta).$$

where f is the frequency in Hertz.

 We will often refer to ω as the frequency, but it must be kept in mind that it is really the radian frequency, and the frequency is actually f.

• The period of the sinuoid is

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

with the units of seconds.

The phase or phase angle of the signal is θ, given in radians.

1.49

Complex Sinusoids

- The Euler relation defines $e^{j\phi} = \cos \phi + j \sin \phi$.
- A complex sinusoid is

• Real sinusoid can be represented as the real part of a complex sinusoid

$$\Re\{Ae^{j(\omega t+\theta)}\} = A\cos(\omega t+\theta)$$

Lecture 2

E 301: Signals and Systems

Exponential Signals

• An exponential signal is given by

$$x(t) = e^{\sigma t}$$

- If $\sigma < 0$ this is exponential decay.
- If $\sigma > 0$ this is exponential growth.

(A) < 3 >

Damped or Growing Sinusoids

• A damped or growing sinusoid is given by

$$x(t) = e^{\sigma t} \cos(\omega t + \theta)$$

• Exponential growth ($\sigma > 0$) or decay ($\sigma < 0$), modulated by a sinusoid.

Complex Exponential Signals

• A complex exponential signal is given by

$$e^{(\sigma+j\omega)t+j\theta} = e^{\sigma t}(\cos(\omega t + \theta) + i\sin(\omega t + \theta))$$

- A exponential growth or decay, modulated by a complex sinusoid.
- Includes all of the previous signals as special cases.

< 10 ×

Complex Plane

Each complex frequency $s=\sigma+j\omega$ corresponds to a position in the complex plane.

Demonstration

Take a look at complex exponentials in 3-dimensions by using "TheComplexExponential" at demonstrations.wolfram.com

Unit Step Functions

• The unit step function u(t) is defined as

$$u(t) = \left\{ egin{array}{cc} 1, & t \geq 0 \ 0, & t < 0 \end{array}
ight.$$

- Also known as the Heaviside step function.
- Alternate definitions of value exactly at zero, such as 1/2.

Uses for the unit step:

• Extracting part of another signal. For example, the piecewise-defined signal

$$x(t) = \left\{ egin{array}{cc} e^{-t}, & t \geq 0 \ 0, & t < 0 \end{array}
ight.$$

can be written as

$$x(t) = u(t)e^{-t}$$

• Combinations of unit steps to create other signals. The offset rectangular signal

$$x(t) = \left\{egin{array}{cc} 0, & t \geq 1 \ 1, & 0 \leq t < 1 \ 0, & t < 0 \end{array}
ight.$$

can be written as

$$x(t) = u(t) - u(t-1).$$

Unit Rectangle

Unit rectangle signal:

$$\operatorname{rect}(t) = \left\{ egin{array}{cc} 1 & ext{if } |t| \leq 1/2 \\ 0 & ext{otherwise.} \end{array}
ight.$$

1.49

Unit Ramp

• The unit ramp is defined as

$$r(t) = \begin{cases} t, & t \ge 0\\ 0, & t < 0 \end{cases}$$

• The unit ramp is the integral of the unit step,

Unit Triangle

Unit Triangle Signal

< (17) >

More Complex Signals

Many more interesting signals can be made up by combining these elements.

Example: Pulsed Doppler RF Waveform (we'll talk about this later!)

RF cosine gated on for $\tau \mu s$, repeated every T μs , for a total of N pulses.

Then multiply by the RF carrier, shown below

to produce the pulsed Doppler waveform

Impulsive signals

(Dirac's) **delta function** or **impulse** δ is an *idealization* of a signal that

- is very large near t = 0
 is very small away from t = 0
 has integral 1

for example:

• the exact shape of the function doesn't matter • ϵ is small (which depends on context)

On plots δ is shown as a solid arrow:

"Delta function" is not a function

イロン イボン イラン イラン

Formal properties

Formally we **define** δ by the property that

$$\int_{-\infty}^{\infty} f(t)\delta(t) dt = f(0)$$

provided f is continuous at t = 0

idea: δ acts over a time interval very small, over which $f(t) \approx f(0)$

- $\delta(t)$ is not really defined for any t, only its behavior in an integral.
- Conceptually δ(t) = 0 for t ≠ 0, infinite at t = 0, but this doesn't make sense mathematically.

Cuff (Lecture 2)

and Systems Fall 2011-12

Example: Model $\delta(t)$ as

$$g_n(t) = n \operatorname{rect}(nt)$$

as $n o \infty$. This has an area (n)(1/n) = 1. If f(t) is continuous at t = 0, then

$$\int_{-\infty}^{\infty} f(t)\delta(t) dt = \lim_{n \to \infty} \int_{-\infty}^{\infty} f(t)g_n(t) dt = f(0) \int_{-\infty}^{\infty} g_n(t) dt = f(0)$$

Cuff (Lecture 2)

Scaled impulses

 $\alpha\delta(t)$ is an impulse at time *T*, with *magnitude* or *strength* α

We have

$$\int_{-\infty}^{\infty} \alpha \delta(t) f(t) \, dt = \alpha f(0)$$

provided f is continuous at 0

On plots: write area next to the arrow, e.g., for $2\delta(t)$,

Multiplication of a Function by an Impulse

• Consider a function $\phi(x)$ multiplied by an impulse $\delta(t)$,

 $\phi(t)\delta(t)$

If $\phi(t)$ is continuous at t = 0, can this be simplified?

• Substitute into the formal definition with a continuous f(t) and evaluate,

$$\int_{-\infty}^{\infty} f(t) \left[\phi(t) \delta(t) \right] dt = \int_{-\infty}^{\infty} \left[f(t) \phi(t) \right] \delta(t) dt$$
$$= f(0) \phi(0)$$

Hence

$$\phi(t)\delta(t) = \phi(0)\delta(t)$$

is a scaled impulse, with strength $\phi(0)$.

Cuff (Lecture 2)

Sifting property

• The signal $x(t) = \delta(t - T)$ is an impulse function with impulse at t = T.

• For
$$f$$
 continuous at $t = T$,
$$\int_{-\infty}^{\infty} f(t)\delta(t - T) dt = f(T)$$

- Multiplying by a function f(t) by an impulse at time T and integrating, extracts the value of f(T).
- This will be important in modeling sampling later in the course.

Cuff (Lecture 2

301: Signals and Systems

Limits of Integration

The integral of a δ is non-zero only if it is in the integration interval:

• If a < 0 and b > 0 then

$$\int_a^b \delta(t) \ dt = 1$$

because the δ is within the limits.

If a > 0 or b < 0, and a < b then

$$\int_a^b \delta(t) \, dt = 0$$

because the δ is outside the integration interval.

• Ambiguous if a = 0 or b = 0

何う くろう くろう

Our convention: to avoid confusion we use limits such as a- or b+ to denote whether we include the impulse or not.

$$\int_{0+}^{1} \delta(t) dt = 0, \quad \int_{0-}^{1} \delta(t) dt = 1, \quad \int_{-1}^{0-} \delta(t) dt = 0, \quad \int_{-1}^{0+} \delta(t) dt = 1$$

example:

$$\int_{-2}^{3} f(t)(2+\delta(t+1)-3\delta(t-1)+2\delta(t+3)) dt$$

= $2\int_{-2}^{3} f(t) dt + \int_{-2}^{3} f(t)\delta(t+1) dt - 3\int_{-2}^{3} f(t)\delta(t-1) dt$
+ $2\int_{-2}^{3} f(t)\delta(t+3)) dt$
= $2\int_{-2}^{3} f(t) dt + f(-1) - 3f(1)$

Cuff (Lecture 2)

ELE 301: 1

Physical interpretation

Impulse functions are used to model physical signals

- that act over short time intervals
- whose effect depends on integral of signal

example: hammer blow, or bat hitting ball, at t = 2

- force f acts on mass m between t = 1.999 sec and t = 2.001 sec
- $\int_{1.999}^{2.001} f(t) dt = I$ (mechanical impulse, N · sec)
- · blow induces change in velocity of

$$v(2.001) - v(1.999) = \frac{1}{m} \int_{1.999}^{2.001} f(\tau) \ d\tau = I/m$$

For most applications, model force as impulse at t = 2, with magnitude I.

example: rapid charging of capacitor

assuming v(0) = 0, what is v(t), i(t) for t > 0?

- i(t) is very large, for a very short time
- a unit charge is transferred to the capacitor 'almost instantaneously'
- v(t) increases to v(t) = 1 'almost instantaneously'

To calculate *i*, *v*, we need a more detailed model.

For example, assume the current delivered by the source is limited: if v(t) < 1, the source acts as a current source $i(t) = l_{\max}$

As $I_{\max}
ightarrow \infty$, i approaches an impulse, v approaches a unit step

In conclusion,

- large current i acts over very short time between t = 0 and ϵ
- total charge transfer is $\int_{-\infty}^{\infty} i(t) dt = 1$
- resulting change in v(t) is $v(\epsilon) v(0) = 1$
- can approximate i as impulse at t = 0 with magnitude 1

Modeling current as impulse

- obscures details of current signal
- obscures details of voltage change during the rapid charging
- preserves total change in charge, voltage
- is reasonable model for time scales $\gg \epsilon$

Integrals of impulsive functions

Integral of a function with impulses has jump at each impulse, equal to the magnitude of impulse

example:
$$x(t) = 1 + \delta(t-1) - 2\delta(t-2)$$
; define $y(t) = \int_0^t x(\tau) d\tau$

Derivatives of discontinuous functions

Conversely, derivative of function with discontinuities has impulse at each jump in function

- Derivative of unit step function u(t) is $\delta(t)$
- Signal y of previous page

$$y'(t) = 1 + \delta(t-1) - 2\delta(t-2)$$

(何) くろう くろう (Lecture 2) Fall 2011-12 35 / 70

Derivatives of impulse functions

Integration by parts suggests we define

$$\int_{-\infty}^{\infty} \delta'(t) f(t) dt = \left. \delta(t) f(t) \right|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \delta(t) f'(t) dt = -f'(0)$$

provided f' continuous at t = 0

- δ' is called *doublet*
- δ', δ'', etc. are called *higher-order impulses* Similar rules for higher-order impulses:

$$\int_{-\infty}^{\infty} \delta^{(k)}(t) f(t) \ dt = (-1)^k f^{(k)}(0)$$

if $f^{(k)}$ continuous at t = 0

< (17) > 1

interpretation of doublet $\delta':$ take two impulses with magnitude $\pm 1/\epsilon,$ a distance ϵ apart, and let $\epsilon\to 0$

$$\int_{-\infty}^{\infty} f(t) \left(\frac{\delta(t)}{\epsilon} - \frac{\delta(t-\epsilon)}{\epsilon} \right) dt = \frac{f(0) - f(\epsilon)}{\epsilon}$$

converges to -f'(0) if $\epsilon \to 0$

 Cuff (Lecture 2)
 ELE 301: Signals and Systems
 Fall 2011-12
 37 / 70

Caveat

 $\delta(t)$ is not a signal or function in the ordinary sense, it only makes mathematical sense when inside an integral sign

- We manipulate impulsive functions as if they were real functions, which they aren't
- It is safe to use impulsive functions in expressions like

$$\int_{-\infty}^{\infty} f(t)\delta(t-T) dt, \quad \int_{-\infty}^{\infty} f(t)\delta'(t-T) dt$$

provided f (resp, f') is continuous at t = T.

• Some innocent looking expressions don't make any sense at all (e.g., $\delta(t)^2$ or $\delta(t^2))$

Talk about Office hours and coming to the first lab.

Systems

- A system transforms input signals into output signals.
- A system is a *function* mapping input signals into output signals.
- We will concentrate on systems with one input and one output *i.e.* single-input, single-output (SISO) systems.
- Notation:
 - y = Sx or y = S(x), meaning the system S acts on an input signal x to produce output signal y.
 - y = Sx does not (in general) mean multiplication!

Block diagrams

Systems often denoted by block diagram:

- Lines with arrows denote signals (not wires).
- Boxes denote systems; arrows show inputs & outputs.
- Special symbols for some systems.

Examples

(with input signal x and output signal y)

Scaling system: y(t) = ax(t)

- Called an *amplifier* if |a| > 1.
- Called an *attenuator* if |a| < 1.
- Called *inverting* if a < 0.
- a is called the gain or scale factor.
- Sometimes denoted by triangle or circle in block diagram:

Differentiator: y(t) = x'(t)

$$x \longrightarrow \frac{d}{dt}$$
 y

Integrator:
$$y(t) = \int_{a}^{t} x(\tau) d\tau$$
 (a is often 0 or $-\infty$)

Common notation for integrator:

Cuff (Lecture 2)

time shift system: y(t) = x(t - T)

- called a *delay system* if T > 0
- called a *predictor system* if T < 0

Fall 2011-12 43 / 70

convolution system:

$$y(t) = \int x(t-\tau)h(\tau) d\tau,$$

where h is a given function (you'll be hearing much more about this!)

Examples with multiple inputs

Inputs $x_1(t)$, $x_2(t)$, and Output y(t))

- summing system: $y(t) = x_1(t) + x_2(t)$
- difference system: $y(t) = x_1(t) x_2(t)$
- multiplier system: $y(t) = x_1(t)x_2(t)$

Interconnection of Systems

We can interconnect systems to form new systems,

• cascade (or series): y = G(F(x)) = GFxx F G y

(note that block diagrams and algebra are reversed)

• sum (or parallel): y = Fx + Gx

• feedback:
$$y = F(x - Gy)$$

In general,

- Block diagrams are a symbolic way to describe a connection of systems.
- We can just as well write out the equations relating the signals.
- We can go back and forth between the system block diagram and the system equations.

Example: Integrator with feedback

Input to integrator is x - ay, so

$$\int_{-\infty}^{t} (x(\tau) - ay(\tau)) d\tau = y(t)$$

Another useful method: the *input* to an integrator is the derivative of its output, so we have

$$x - ay = y'$$

(of course, same as above)

 Cuff (Lecture 2)
 ELE 301: Signals and Systems
 Fall 2011-12
 49 / 70

Linearity

A system *F* is **linear** if the following two properties hold:

homogeneity: if x is any signal and a is any scalar,

$$F(ax) = aF(x)$$

Superposition: if x and x are any two signals,

$$F(x+\tilde{x})=F(x)+F(\tilde{x})$$

In words, linearity means:

- Scaling before or after the system is the same.
- Summing before or after the system is the same.

Linearity means the following pairs of block diagrams are equivalent, *i.e.*, have the same output for any input(s)

Examples of linear systems: scaling system, differentiator, integrator, running average, time shift, convolution, modulator, sampler.

Examples of nonlinear systems: sign detector, multiplier (sometimes), comparator, quantizer, adaptive filter

• Multiplier as a modulator, $y(t) = x(t) \cos(2\pi ft)$, is *linear*.

Multiplier as a squaring system, y(t) = x²(t) is nonlinear.

イロン イタン イラン イラン

System Memory

- A system is *memoryless* if the output depends only on the present input.
 - Ideal amplifier
 - Ideal gear, transmission, or lever in a mechanical system
- A system with memory has an output signal that depends on inputs in the past or future.
 - Energy storage circuit elements such as capacitors and inductors
 - Springs or moving masses in mechanical systems
- A causal system has an output that depends only on past or present inputs.
 - Any real physical circuit, or mechanical system.

 <</td>
 →

 →

 →

 <

Time-Invariance

- A system is time-invariant if a time shift in the input produces the same time shift in the output.
- For a system F,

$$y(t) = Fx(t)$$

implies that

$$y(t-\tau) = Fx(t-\tau)$$

for any time shift τ .

1.49

• Implies that delay and the system *F* commute. These block diagrams are equivalent:

• Time invariance is an important system property. It greatly simplifies the analysis of systems.

System Stability

- Stability important for most engineering applications.
- Many definitions
- If a bounded input

$$|x(t)| \leq M_x < \infty$$

always results in a bounded output

$$|y(t)| \leq M_y < \infty,$$

where M_x and M_y are finite positive numbers, the system is Bounded Input Bounded Output (BIBO) stable.

1.49

Example: Cruise control, from introduction,

The output y is

$$y = H(k(x - y))$$

We'll see later that this system can become unstable if k is too large (depending on H)

- Positive error adds gas
- Delay car velocity change, speed overshoots
- Negative error cuts gas off
- Delay in velocity change, speed undershoots
- Repeat!

Cuff I	Lecture 2)

E 301: Signals and Systems

System Invertibility

- A system is invertible if the input signal can be recovered from the output signal.
- If F is an invertible system, and

$$y = Fx$$

then there is an inverse system F^{INV} such that

$$x = F^{INV}y = F^{INV}Fx$$

so $F^{INV}F = I$, the identity operator.

くロン く得え くまえ くまん

Fall 2011-12

57 / 70

Example: Multipath echo cancelation

Important problem in communications, radar, radio, cell phones.

	$\langle \Box \rangle$	< ₽ >	* 문 *	< 2→	Э.	୬୯୯
Cuff (Lecture 2)			Fa	II 2011-12		59 / 70

Generally there will be multiple echoes.

Multipath can be described by a system y = Fx

- If we transmit an impulse, we receive multiple delayed impulses.
- One transmitted message gives multiple overlapping messages

We want to find a system ${\cal F}^{INV}$ that takes the multipath corrupted signal y and recovers x

$$F^{INV}y = F^{INV}(Fx)$$
$$= (F^{INV}F) x$$
$$= x$$

Often possible if we allow a delay in the output.

Example: AM Radio Transmitter and receiver

- Multiple input systems
- · Linear and non-linear systems

		< D)	(@)	< 2	$(A \equiv A)$	2	୬୯୯
Cuff (Lecture 2)	ELE 301: Signals and Systems				all 2011-1:	2	61 / 70

Systems Described by Differential Equations

Many systems are described by a *linear constant coefficient ordinary differential equation* (LCCODE):

$$a_n y^{(n)}(t) + \cdots + a_1 y'(t) + a_0 y(t) = b_m x^{(m)}(t) + \cdots + b_1 x'(t) + b_0 x(t)$$

with given initial conditions

 $y^{(n-1)}(0), \ldots, y'(0), y(0)$

(which fixes y(t), given x(t))

- n is called the order of the system
- $b_0, \ldots, b_m, a_0, \ldots, a_n$ are the *coefficients* of the system

This is important because LCCODE systems are **linear** when initial conditions are all zero.

- Many systems can be described this way
- . If we can describe a system this way, we know it is linear

Note that an LCCODE gives an *implicit* description of a system.

- It describes how x(t), y(t), and their derivatives interrelate
- It doesn't give you an explicit solution for y(t) in terms of x(t)

Soon we'll be able to *explicitly* express y(t) in terms of x(t)

Cuff (Lecture 2)

F 301: Signals and Systems

Examples

Simple examples

• scaling system $(a_0 = 1, b_0 = a)$

$$y = ax$$

integrator (a₁ = 1, b₀ = 1)

$$y' = x$$

$$y = x^{\prime}$$

• integrator with feedback (a few slides back, $a_1 = 1, a_0 = a, b_0 = 1$)

$$y' + ay = x$$

何う くろう くろう

Fall 2011-12

63 / 70

2nd Order Circuit Example

By Kirchoff's voltage law

$$x - Li' - Ri - y = 0$$

Using i = Cy',

$$x - LCy'' - RCy' - y = 0$$

or

$$LCy'' + RCy' + y = x$$

which is an LCCODE. T	his is a linear system.		- + E	 < 2 × 	2	৩৫৫
Cuff (Lecture 2)	ELE 301: Signals and Systems			Fall 2011-1	2	65 / 70

Mechanical System

This can represent suspension system, or building during earthquake, ...

イロン イボン イラン イラン

66 / 70

- x(t) is displacement of base; y(t) is displacement of mass
- spring force is k(x y); damping force is b(x y)'
- Newton's equation is my'' = b(x y)' + k(x y)

Rewrite as second-order LCCODE

$$my'' + by' + ky = bx' + kx$$

This is a linear system.

 Cuff (Lecture 2)
 ELE 301: Signals and Systems
 Fall 2011-12
 67 / 70

Discrete-Time Systems

- Many of the same block diagram elements
- Scaling and delay blocks common
- The system equations are difference equations

 $a_0y[n] + a_1y[n-1] + \ldots = b_0x[n] + b_1x[n-1] + \ldots$

where x[n] is the input, and y[n] is the output.

Discrete-Time System Example

• The input into the delay is

$$e[n] = x[n] - ay[n]$$

• The output is y[n] = e[n-1], so

$$y[n] = x[n-1] - ay[n-1].$$

Questions

Are these systems linear? Time invariant?

•
$$y(t) = \sqrt{x(t)}$$

• $y(t) = x(t)z(t)$, where $z(t)$ is a known function

•
$$y(t) = 0$$

•
$$y(t) = x(T - t)$$

A linear system F has an inverse system F^{inv} . Is F^{inv} linear?

< (17) >