Lecture 5 ELE 301: Signals and Systems

Prof. Paul Cuff

Princeton University

Fall 2011-12

Cuff (Lecture 5)

Fall 2011-12

1 / 24

History of the Fourier Series

- Euler (1748): Vibrations of a string
- Fourier: Heat dynamics
- Dirichlet (1829): Convergence of the Fourier Series
- Lagrange: Rejected publication

1.49

What is the Fourier Series

 The Fourier Series allows us to represent periodic signals as sums of sinusoids.

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}$$

where $f_0 = 1/T_0$ and T_0 is the fundamental period.

- There are other transforms for representing signals
 - Wavelet transform
 - Taylor expansion
 - Any orthonormal basis

		< 🗆	$r \rightarrow \sigma \rightarrow$	$\in \Xi \ni$	${}^{+} \in \mathbb{R} \rightarrow \mathbb{R}$	3	୬୯୯
Cuff (Lecture 5)	ELE 301: Signals and Systems			E	Fall 2011-	12	3 / 24

Response of LTI Systems to Exponential Functions

For an LTI system with impulse response h(t), output is the convolution of input and impulse response:

$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) \, d\tau$$

$$x(t)$$
 (t) (t)

If the input is a complex exponential $x(t) = e^{j\omega t}$

Eigenfunctions

Continuous time:

 $e^{st} \longrightarrow^{h} H(s)e^{st}$

Aliasing

Wolfram Demo:

 $e^{(\sigma+j(2\pi f))n} = e^{(\sigma+j(2\pi (f+k)))n}$ for all integers n and k.

Sums of Exponentials

 $a_1 + e^{s_1t} + a_2 + e^{s_2t} + a_3 + e^{s_3t} \longrightarrow^h a_1H(s_1)e^{s_1t} + a_2H(s_2)e^{s_2t} + a_3H(s_3)e^{s_3t}$

(D) (A) (A) (A) (A) Cuff (Lecture 5)

Period Signals

Claim:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk2\pi f_0 t}$$

where $f_0 = 1/T_0$ and T_0 is the fundamental period.

Consider an easy one:

$$\begin{array}{rcl} x(t) & = & \cos(2\pi f_0 t) \\ & = & \frac{1}{2}e^{2\pi f_0 t} + \frac{1}{2}e^{-2\pi f_0 t}. \end{array}$$

Therefore, $T = 1/f_0$ and $a_1 = a_{-1} = 1/2$.

Fall 2011-12

7 / 24

Fourier Series approximation to a square wave

Fourier Series approximation to a square wave

· · (큔) · (큰) · (큰) · 큰 · 이익은 Fall 2011-12 10 / 24

Real Signals

If x is real

$$x(t) = a_0 + 2 \sum_{k=1}^{\infty} A_k \cos(k 2\pi f_0 t + \theta_k),$$

where $A_k e^{j\theta_k} = a_k$.

Fourier Series Coefficients

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk2\pi f_0 t} dt.$$

Conditions for Convergence

- Continuous
- Finite Power (energy over a period)
- Dirichlet conditions:
 - Absolutely integrable
 - Bounded Variation
 - Finite Discontinuities

Cuff (Lecture 5)

LE 301: Signals and Systems

Linearity

Time-shift

Cuff (Lecture 5)

E 301: Signals and Systems

←□→ ←②→ ←②→ ←②→ ② Q (*)
Fall 2011-12 15 / 24

Time Reversal

Time Scaling

Cuff (Lecture 5)

E 301: Signals and Systems

G→ (書→ (書→ (書→))) (○)
Fall 2011-12 17 / 24

Multiplication

Conjugate

Cuff (Lecture 5)

Fall 2011-12 19 / 24

Parseval's Theorem

Discrete Time

Aliasing:

All periodic exponential signals with period N are:

$$\phi_k[n] = e^{jk\frac{2\pi}{N}n}$$
 for $k = 0, 1, ..., N - 1$.

Discrete Time Fourier Series

$$\begin{aligned} \mathbf{x}[n] &= \sum_{k < < N >} a_k \phi_k[n] \\ \mathbf{a}_k &= \frac{1}{N} \sum_{n < < N >} \mathbf{x}[n] \phi_k[-n] \end{aligned}$$

Multiplication

Cuff (Lecture 5)

301: Signals and Systems

Fourier Series Example

Fourier Series Example using Matlab

 $x(t) = e^{-t} \quad \text{for} \quad -1 < t \leq 1.$