Lecture 6 ELE 301: Signals and Systems

Prof. Paul Cuff

Princeton University

Fall 2011-12

Cuff (Lecture 6)

E 301: Signals and Systems

Fall 2011-12 1 / 15

《口》 《聞》 《臣》 《臣》

2 900

Outline

• LTI System Response

Filtering

イロン イタン イラン イラン

Transfer Function

• Response to LTI system h.

Continuous time:
$$e^{st} \longrightarrow^{h} H_{c}(s)e^{st}$$
,
Discrete time: $z^{n} \longrightarrow^{h} H_{d}(z)z^{n}$.

• We are interested in the cases $s = i2\pi f$ and $z = e^{i2\pi f}$.

Continuous time:
$$y(t) = \sum_{k=-\infty}^{\infty} a_k H_c (i2\pi f_0 k) e^{i2\pi f_0 kt}$$
,
Discrete time: $y[n] = \sum_{k=-\infty}^{\infty} a_k H_d (e^{i2\pi f_0 k}) e^{i2\pi f_0 kn}$.

where a_k are the Fourier Series coefficients of the input with period $\mathcal{T}=1/f_0.$

Intuitive Visualization

Note: Plots aren't technically accurate because complex numbers are not one-dimensional.

Cuff	(Locturo 6
Cull	Lecture 0

イロン イタン イラン イラン

Intuitive Visualization

Note: Plots aren't technically accurate because complex numbers are not one-dimensional.

Filtering Example

$$h(t) = e^{-t}u(t),$$

 $H(i2\pi f) = ?.$

First-order low-pass filter

Filtering example - running average

$$h[n] = \frac{1}{3}(\delta[n] + \delta[n-1] + \delta[n-2]),$$

$$H(e^{i2\pi f}) = ?.$$

Fall 2011-12 8 / 15

Running average

$$H(i2\pi f) = \frac{1}{3} \left(1 + e^{-i2\pi f} + e^{-i4\pi f} \right).$$

Filtering example - Differentiator

What is the impulse response of a differentiator?

$$h(t) = ?$$

100 100 100 100

Unit Doublet

• Another invented pseudo-function

· Conceptually the derivative of the Dirac delta function

Properties

$$\blacktriangleright \ \delta' * f = f'$$

•
$$f(t)\delta'(t-t_0) = -f'(t_0)\delta(t-t_0)$$

•
$$\delta'(-t) = -\delta'(t)$$

Cuff (Lecture 6)

LE 301: Signals and Systems

Differentiator

$$h(t) = \delta'(t),$$

$$H(i2\pi f) = ?.$$

イロン イボン イラン イラン

High-pass filter (Differentiator)

 $H(i2\pi f) = i2\pi f.$

Filtering example - discrete difference

$$h[n] = \frac{1}{2}(\delta[n] - \delta[n-1]),$$

$$H(e^{i2\pi f}) = ?.$$

Discrete Difference

$$H(i2\pi f) = i e^{-i\pi f} \sin(\pi f).$$

Cuff (Lecture 6) ELE 301: Signals and Systems Fall 2011-12 15 / 15