Lecture 7
 ELE 301: Signals and Systems

Prof. Paul Cuff
Princeton University

Fall 2011-12

Introduction to Fourier Transforms

- Fourier transform as a limit of the Fourier series
- Inverse Fourier transform: The Fourier integral theorem
- Example: the rect and sinc functions
- Cosine and Sine Transforms
- Symmetry properties
- Periodic signals and δ functions

Fourier Series

Suppose $x(t)$ is not periodic. We can compute the Fourier series as if x was periodic with period T by using the values of $x(t)$ on the interval $t \in[-T / 2, T / 2)$.

$$
\begin{aligned}
a_{k} & =\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j 2 \pi k f_{0} t} d t, \\
x_{T}(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi k f_{0} t},
\end{aligned}
$$

where $f_{0}=1 / T$.
The two signals x and x_{T} will match on the interval $[-T / 2, T / 2)$ but $\tilde{x}(t)$ will be periodic.
What happens if we let T increase?

Rect Example

For example, assume $x(t)=\operatorname{rect}(t)$, and that we are computing the Fourier series over an interval T,

The fundamental period for the Fourier series in T, and the fundamental frequency is $f_{0}=1 / T$.

The Fourier series coefficients are

$$
a_{k}=\frac{1}{T} \operatorname{sinc}\left(k f_{0}\right)
$$

where $\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}$.

Rect Example Continued

Take a look at the Fourier series coefficients of the rect function (previous slide). We find them by simply evaluating $\frac{1}{T} \operatorname{sinc}(f)$ at the points $f=k f_{0}$.

More densely sampled, same $\operatorname{sinc}()$ envelope, decreased amplitude.

Fourier Transforms

Given a continuous time signal $x(t)$, define its Fourier transform as the function of a real f :

$$
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
$$

This is similar to the expression for the Fourier series coefficients.
Note: Usually $X(f)$ is written as $X(i 2 \pi f)$ or $X(i \omega)$. This corresponds to the Laplace transform notation which we encountered when discussing transfer functions $H(s)$.

We can interpret this as the result of expanding $x(t)$ as a Fourier series in an interval $[-T / 2, T / 2$), and then letting $T \rightarrow \infty$.

The Fourier series for $x(t)$ in the interval $[-T / 2, T / 2)$:

$$
x_{T}(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi k f_{0} t}
$$

where

$$
a_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j 2 \pi k f_{0} t} d t
$$

Define the truncated Fourier transform:

$$
X_{T}(f)=\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) e^{-j 2 \pi f t} d t
$$

so that

$$
a_{k}=\frac{1}{T} X_{T}\left(k f_{0}\right)=\frac{1}{T} X_{T}\left(\frac{k}{T}\right)
$$

The Fourier series is then

$$
x_{T}(t)=\sum_{k=-\infty}^{\infty} \frac{1}{T} X_{T}\left(k f_{0}\right) e^{j 2 \pi k f_{0} t}
$$

The limit of the truncated Fourier transform is

$$
X(f)=\lim _{T \rightarrow \infty} X_{T}(f)
$$

The Fourier series converges to a Riemann integral:

$$
\begin{aligned}
x(t) & =\lim _{T \rightarrow \infty} x_{T}(t) \\
& =\lim _{T \rightarrow \infty} \sum_{k=-\infty}^{\infty} \frac{1}{T} X_{T}\left(\frac{k}{T}\right) e^{j 2 \pi \frac{k}{T} t} \\
& =\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f .
\end{aligned}
$$

Continuous-time Fourier Transform

Which yields the inversion formula for the Fourier transform, the Fourier integral theorem:

$$
\begin{aligned}
x(f) & =\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t \\
x(t) & =\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f .
\end{aligned}
$$

Comments:

- There are usually technical conditions which must be satisfied for the integrals to converge - forms of smoothness or Dirichlet conditions.
- The intuition is that Fourier transforms can be viewed as a limit of Fourier series as the period grows to infinity, and the sum becomes an integral.
- $\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f$ is called the inverse Fourier transform of $X(f)$.

Notice that it is identical to the Fourier transform except for the sign in the exponent of the complex exponential.

- If the inverse Fourier transform is integrated with respect to ω rather than f, then a scaling factor of $1 /(2 \pi)$ is needed.

Cosine and Sine Transforms

Assume $x(t)$ is a possibly complex signal.

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} x(t)(\cos (2 \pi f t)-j \sin (2 \pi f t)) d t \\
& =\int_{-\infty}^{\infty} x(t) \cos (\omega t) d t-j \int_{-\infty}^{\infty} x(t) \sin (\omega t) d t
\end{aligned}
$$

Fourier Transform Notation

For convenience, we will write the Fourier transform of a signal $x(t)$ as

$$
\mathcal{F}[x(t)]=X(f)
$$

and the inverse Fourier transform of $X(f)$ as

$$
\mathcal{F}^{-1}[X(f)]=x(t) .
$$

Note that

$$
\mathcal{F}^{-1}[\mathcal{F}[x(t)]]=x(t)
$$

and at points of continuity of $x(t)$.

Duality

Notice that the Fourier transform \mathcal{F} and the inverse Fourier transform \mathcal{F}^{-1} are almost the same.

Duality Theorem: If $x(t) \Leftrightarrow X(f)$, then $X(t) \Leftrightarrow x(-f)$. In other words, $\mathcal{F}[\mathcal{F}[x(t)]]=x(-t)$.

Example of Duality

- Since $\operatorname{rect}(t) \Leftrightarrow \operatorname{sinc}(f)$ then

$$
\operatorname{sinc}(t) \Leftrightarrow \operatorname{rect}(-f)=\operatorname{rect}(f)
$$

(Notice that if the function is even then duality is very simple)

Generalized Fourier Transforms: δ Functions

A unit impulse $\delta(t)$ is not a signal in the usual sense (it is a generalized function or distribution). However, if we proceed using the sifting property, we get a result that makes sense:

$$
\mathcal{F}[\delta(t)]=\int_{-\infty}^{\infty} \delta(t) e^{-j 2 \pi f t} d t=1
$$

so

$$
\delta(t) \Leftrightarrow 1
$$

This is a generalized Fourier transform. It behaves in most ways like an ordinary FT.

Shifted δ

A shifted delta has the Fourier transform

$$
\begin{aligned}
\mathcal{F}\left[\delta\left(t-t_{0}\right)\right] & =\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) e^{-j 2 \pi f t} d t \\
& =e^{-j 2 \pi t_{0} f}
\end{aligned}
$$

so we have the transform pair

$$
\delta\left(t-t_{0}\right) \Leftrightarrow e^{-j 2 \pi t_{0} f}
$$

Constant

Next we would like to find the Fourier transform of a constant signal $x(t)=1$. However, direct evaluation doesn't work:

$$
\begin{aligned}
\mathcal{F}[1] & =\int_{-\infty}^{\infty} e^{-j 2 \pi f t} d t \\
& =\left.\frac{e^{-j 2 \pi f t}}{-j 2 \pi f}\right|_{-\infty} ^{\infty}
\end{aligned}
$$

and this doesn't converge to any obvious value for a particular f.
We instead use duality to guess that the answer is a δ function, which we can easily verify.

$$
\begin{aligned}
\mathcal{F}^{-1}[\delta(f)] & =\int_{-\infty}^{\infty} \delta(f) e^{j 2 \pi f t} d f \\
& =1
\end{aligned}
$$

So we have the transform pair

$$
1 \Leftrightarrow \delta(f)
$$

This also does what we expect - a constant signal in time corresponds to an impulse a zero frequency.

Sinusoidal Signals

If the δ function is shifted in frequency,

$$
\begin{aligned}
\mathcal{F}^{-1}\left[\delta\left(f-f_{0}\right)\right] & =\int_{-\infty}^{\infty} \delta\left(f-f_{0}\right) e^{j 2 \pi f t} d f \\
& =e^{j 2 \pi f_{0} t}
\end{aligned}
$$

so

$$
e^{j 2 \pi f_{0} t} \Leftrightarrow \delta\left(f-f_{0}\right)
$$

Cosine

With Euler's relations we can find the Fourier transforms of sines and cosines

$$
\begin{aligned}
\mathcal{F}\left[\cos \left(2 \pi f_{0} t\right)\right] & =\mathcal{F}\left[\frac{1}{2}\left(e^{j 2 \pi f_{0} t}+e^{-j 2 \pi f_{0} t}\right)\right] \\
& =\frac{1}{2}\left(\mathcal{F}\left[e^{j 2 \pi f_{0} t}\right]+\mathcal{F}\left[e^{-j 2 \pi f_{0} t}\right]\right) \\
& =\frac{1}{2}\left(\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right)
\end{aligned}
$$

so

$$
\cos \left(2 \pi f_{0} t\right) \Leftrightarrow \frac{1}{2}\left(\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right)
$$

Sine

Similarly, since $\sin \left(f_{0} t\right)=\frac{1}{2 j}\left(e^{j 2 \pi f_{0} t}-e^{-j 2 \pi f_{0} t}\right)$ we can show that

$$
\sin \left(f_{0} t\right) \Leftrightarrow \frac{j}{2}\left(\delta\left(f+f_{0}\right)-\delta\left(f-f_{0}\right)\right)
$$

$$
-j \pi \delta\left(\omega-\omega_{0}\right)
$$

The Fourier transform of a sine or cosine at a frequency f_{0} only has energy exactly at $\pm f_{0}$, which is what we would expect.

