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Introduction to Fourier Transforms

Fourier transform as a limit of the Fourier series

Inverse Fourier transform: The Fourier integral theorem

Example: the rect and sinc functions

Cosine and Sine Transforms

Symmetry properties

Periodic signals and δ functions
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Fourier Series

Suppose x(t) is not periodic. We can compute the Fourier series as if x
was periodic with period T by using the values of x(t) on the interval
t ∈ [−T/2,T/2).

ak =
1

T

∫ T/2

−T/2
x(t)e−j2πkf0t dt,

xT (t) =
∞∑

k=−∞
ake

j2πkf0t ,

where f0 = 1/T .

The two signals x and xT will match on the interval [−T/2,T/2) but
x̃(t) will be periodic.

What happens if we let T increase?
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Rect Example
For example, assume x(t) = rect(t), and that we are computing the
Fourier series over an interval T ,

T
−1/2 1/2 t

f(t) = rect(t)

The fundamental period for the Fourier series in T , and the fundamental
frequency is f0 = 1/T .

The Fourier series coefficients are

ak =
1

T
sinc (kf0)

where sinc(t) = sin(πt)
πt .
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The Sinc Function

1

t2 40-2-4
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Rect Example Continued

Take a look at the Fourier series coefficients of the rect function (previous
slide). We find them by simply evaluating 1

T sinc(f ) at the points f = kf0.

1

4π 8π0-4π-8π

1/2

1/4

ω = n ω0

T = 1

T = 2

T = 4

ω0 = 2π

ω0 = π

ω0 = π/2

ω = n ω0

ω = n ω0
4π 8π0-4π-8π

4π 8π0-4π-8π

More densely sampled, same sinc() envelope, decreased amplitude.
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Fourier Transforms

Given a continuous time signal x(t), define its Fourier transform as the
function of a real f :

X (f ) =

∫ ∞
−∞

x(t)e−j2πft dt

This is similar to the expression for the Fourier series coefficients.

Note: Usually X (f ) is written as X (i2πf ) or X (iω). This corresponds to
the Laplace transform notation which we encountered when discussing
transfer functions H(s).
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We can interpret this as the result of expanding x(t) as a Fourier series in
an interval [−T/2,T/2), and then letting T →∞.

The Fourier series for x(t) in the interval [−T/2,T/2):

xT (t) =
∞∑

k=−∞
ake

j2πkf0t

where

ak =
1

T

∫ T/2

−T/2
x(t)e−j2πkf0t dt.

Define the truncated Fourier transform:

XT (f ) =

∫ T
2

−T
2

x(t)e−j2πft dt

so that

ak =
1

T
XT (kf0) =

1

T
XT

(
k

T

)
.
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The Fourier series is then

xT (t) =
∞∑

k=−∞

1

T
XT (kf0)e j2πkf0t

The limit of the truncated Fourier transform is

X (f ) = lim
T→∞

XT (f )

The Fourier series converges to a Riemann integral:

x(t) = lim
T→∞

xT (t)

= lim
T→∞

∞∑
k=−∞

1

T
XT

(
k

T

)
e j2π

k
T
t

=

∫ ∞
−∞

X (f )e j2πft df .
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Continuous-time Fourier Transform

Which yields the inversion formula for the Fourier transform, the Fourier
integral theorem:

X (f ) =

∫ ∞
−∞

x(t)e−j2πft dt,

x(t) =

∫ ∞
−∞

X (f )e j2πft df .
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Comments:

There are usually technical conditions which must be satisfied for the
integrals to converge – forms of smoothness or Dirichlet conditions.

The intuition is that Fourier transforms can be viewed as a limit of
Fourier series as the period grows to infinity, and the sum becomes an
integral.∫∞
−∞ X (f )e j2πft df is called the inverse Fourier transform of X (f ).

Notice that it is identical to the Fourier transform except for the sign
in the exponent of the complex exponential.

If the inverse Fourier transform is integrated with respect to ω rather
than f , then a scaling factor of 1/(2π) is needed.
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Cosine and Sine Transforms

Assume x(t) is a possibly complex signal.

X (f ) =

∫ ∞
−∞

x(t)e−j2πftdt

=

∫ ∞
−∞

x(t) (cos(2πft)− j sin(2πft)) dt

=

∫ ∞
−∞

x(t) cos(ωt)dt − j

∫ ∞
−∞

x(t) sin(ωt) dt.
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Fourier Transform Notation

For convenience, we will write the Fourier transform of a signal x(t) as

F [x(t)] = X (f )

and the inverse Fourier transform of X (f ) as

F−1 [X (f )] = x(t).

Note that
F−1 [F [x(t)]] = x(t)

and at points of continuity of x(t).
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Duality

Notice that the Fourier transform F and the inverse Fourier transform
F−1 are almost the same.

Duality Theorem: If x(t)⇔ X (f ), then X (t)⇔ x(−f ).

In other words, F [F [x(t)]] = x(−t).
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Example of Duality

Since rect(t)⇔ sinc(f ) then

sinc(t)⇔ rect(−f ) = rect(f )

(Notice that if the function is even then duality is very simple)

f (t)

t ω

F(ω)

⇔

⇔

1

t

f (t)

0

0

ω

2π
F(ω)

2π−2π

1/2−1/2

1/2−1/2

2π−2π

1

1
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Generalized Fourier Transforms: δ Functions

A unit impulse δ(t) is not a signal in the usual sense (it is a generalized
function or distribution). However, if we proceed using the sifting property,
we get a result that makes sense:

F [δ(t)] =

∫ ∞
−∞

δ(t)e−j2πft dt = 1

so
δ(t)⇔ 1

This is a generalized Fourier transform. It behaves in most ways like an
ordinary FT.

0 t

δ(t)

0 ω

1⇔
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Shifted δ

A shifted delta has the Fourier transform

F [δ(t − t0)] =

∫ ∞
−∞

δ(t − t0)e−j2πftdt

= e−j2πt0f

so we have the transform pair

δ(t − t0)⇔ e−j2πt0f

0 t
0 ω

1
⇔δ(t− t0)

t0

e− jωt0
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Constant

Next we would like to find the Fourier transform of a constant signal
x(t) = 1. However, direct evaluation doesn’t work:

F [1] =

∫ ∞
−∞

e−j2πftdt

=
e−j2πft

−j2πf

∣∣∣∣∞
−∞

and this doesn’t converge to any obvious value for a particular f .

We instead use duality to guess that the answer is a δ function, which we
can easily verify.

F−1 [δ(f )] =

∫ ∞
−∞

δ(f )e j2πftdf

= 1.
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So we have the transform pair

1⇔ δ(f )

0 t 0 ω

1 ⇔ 2πδ(ω)

This also does what we expect – a constant signal in time corresponds to
an impulse a zero frequency.
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Sinusoidal Signals

If the δ function is shifted in frequency,

F−1 [δ(f − f0)] =

∫ ∞
−∞

δ(f − f0)e j2πftdf

= e j2πf0t

so
e j2πf0t ⇔ δ(f − f0)

0
t0

ω

1
⇔

e jω0t 2πδ(ω−ω0)

ω0
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Cosine
With Euler’s relations we can find the Fourier transforms of sines and
cosines

F [cos(2πf0t)] = F
[

1

2

(
e j2πf0t + e−j2πf0t

)]
=

1

2

(
F
[
e j2πf0t

]
+ F

[
e−j2πf0t

])
=

1

2
(δ(f − f0) + δ(f + f0)) .

so

cos(2πf0t)⇔ 1

2
(δ(f − f0) + δ(f + f0)) .

0t0 ω

1

⇔
ω0

cos(ω0t) πδ(ω−ω0)πδ(ω+ω0)

−ω0
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Sine

Similarly, since sin(f0t) = 1
2j (e

j2πf0t − e−j2πf0t) we can show that

sin(f0t)⇔ j

2
(δ(f + f0)− δ(f − f0)) .

0t0 ω

1
⇔ ω0

jπδ(ω+ω0)

−ω0
− jπδ(ω−ω0)

sin(ω0t)

The Fourier transform of a sine or cosine at a frequency f0 only has energy
exactly at ±f0, which is what we would expect.
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