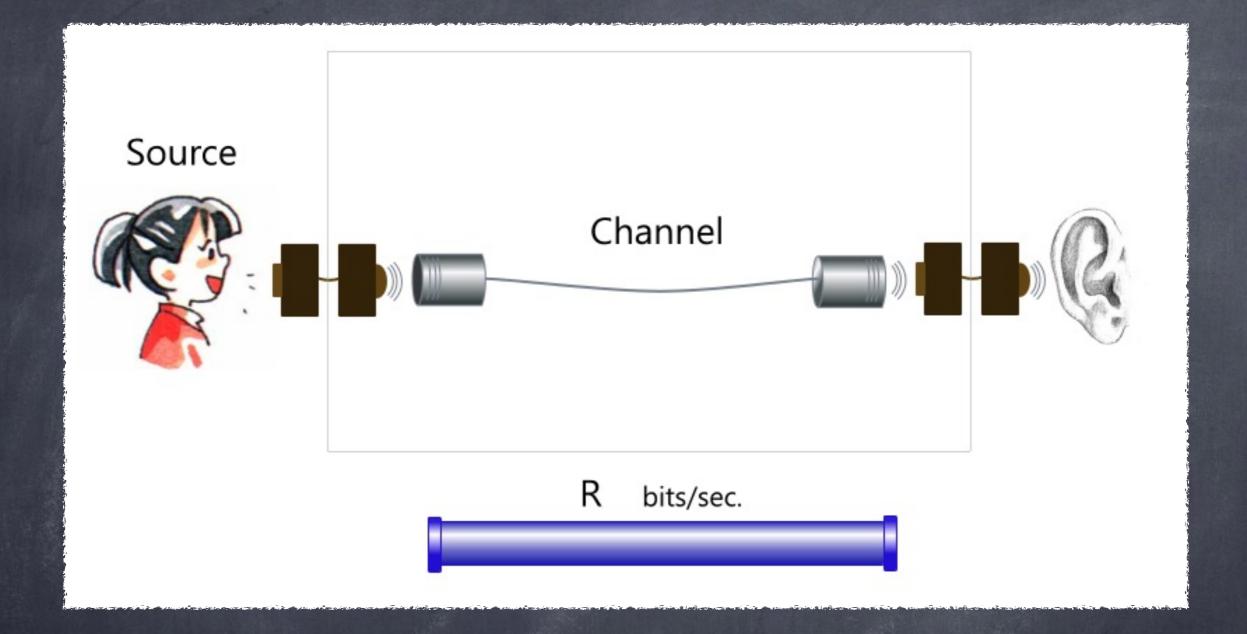
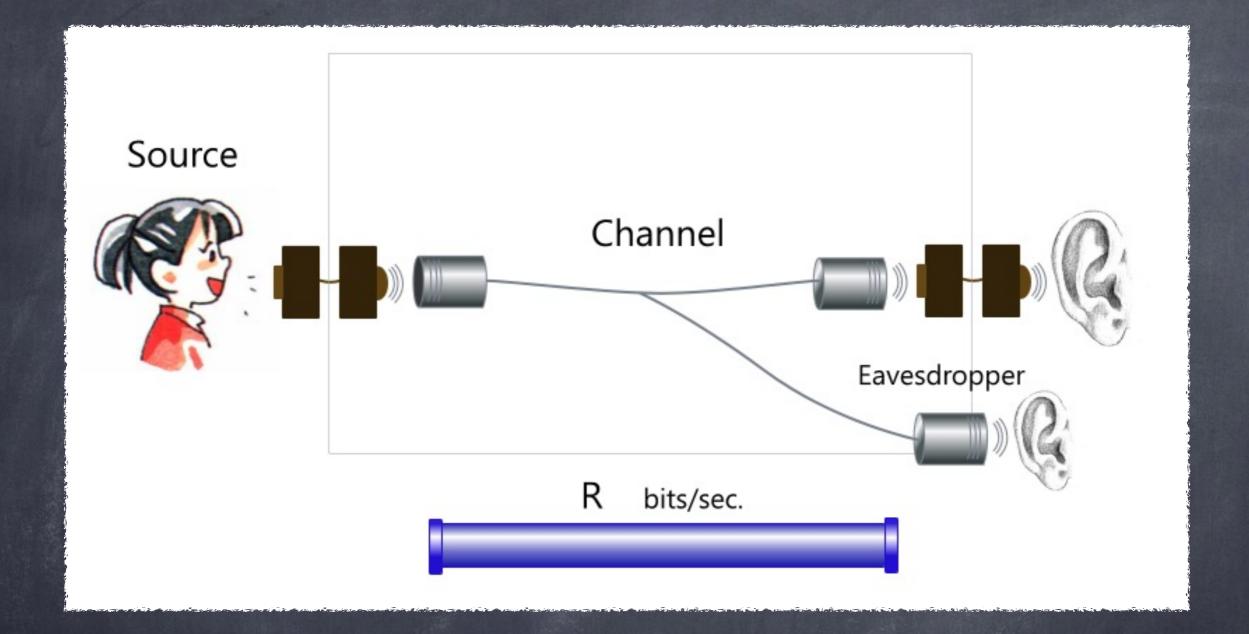
Source Coding (secrecy and embedding) Paul Cuff - Princeton University



Communication

Move a signal from one place to another

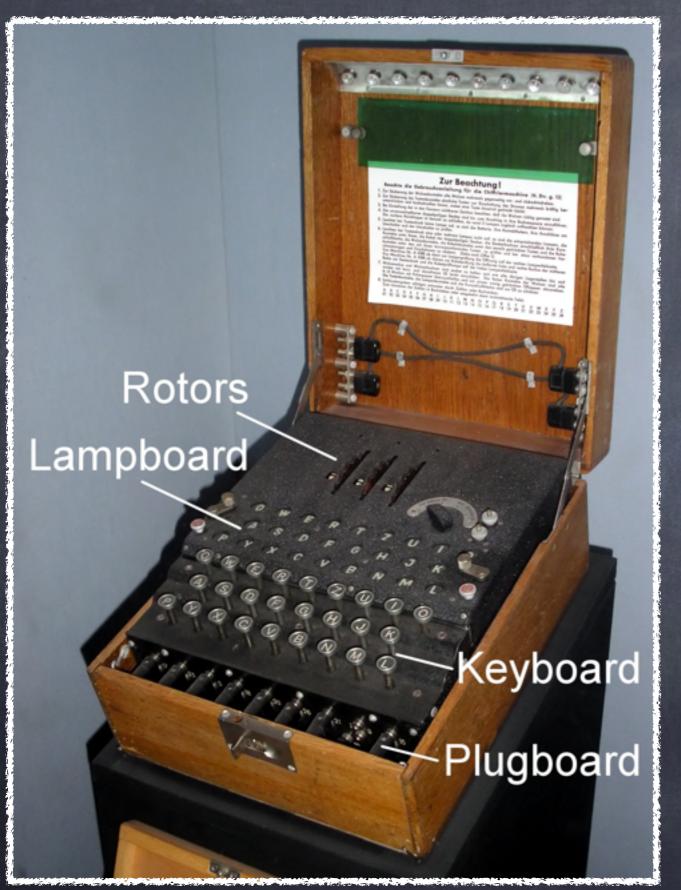


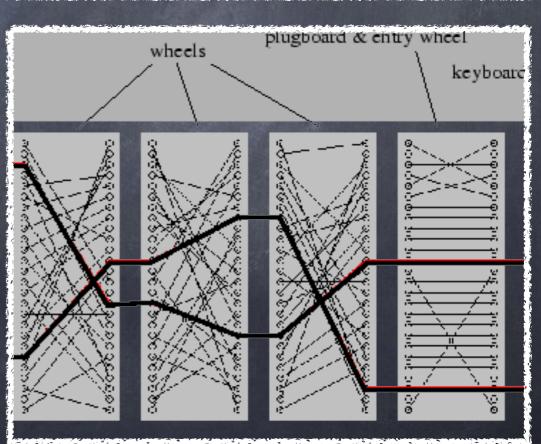
Communication

Move a signal from one place to another

Secrecy Systems

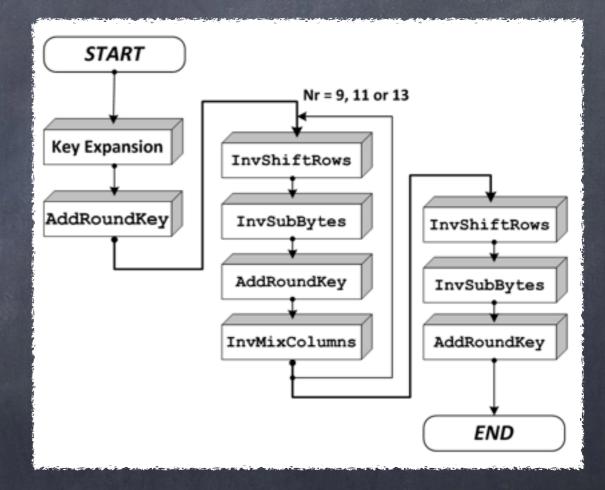
- o Old Ciphers:
 - o Obscure (design kept secret)
 - o Complicated
- o New Ciphers
 - o Computationally challenging
 - o Complicated





AES

- o Complicated
- Not known how to undo



Modern Cryptography

- o Began in 1970's (from IT community)
- Built on fundamental mathematical problems that are believed difficult to compute
- o Diffie-Hellman
- o RSA

Information Theoretic Security

- o Shannon's '49 paper
 - e Fewer assumptions (omnipotent adversary)
 - More resources required for mathematical guarantees

rerfeet serrey

- o Independence between the transmitted message and the information
- Perfect Secrecy achieved with onetime pad (Vernam cipher).
- Shannon: This method is also necessary. (i.e. Rx>H(X))

Onc-lime rad

Information: 011010100010110

Key: 110100110100101

Message: 101110010110011

Overview

Channel

Source

Secure Channel Coding Secure Source Coding

Compression

Encoder: $f: \mathcal{X}^n \to [2^{nR}]$

Decoder: $g: [2^{nR}] \to \mathcal{Y}^n$

$$X^{n}$$
 X^{n}
 X^{n

IID Model

- Let the information signal be i.i.d.
 with a known distribution Px
- @ Represent as: X1, X2, ..., Xn = Xn
- o Codec functions over the block

Lossless Compression

LOSSLESS

- R is achievable if for any $\varepsilon>0$, there exists an n, f, and g such that $P(X^n \neq Y^n) < \varepsilon$
- o Minimum achievable rate is H(X)

ENEROPY

$$H(X) = \mathbf{E} \log \frac{1}{P_X(X)}$$

$$H(X) \ge 0$$
 (deterministic)
 $H(X) \le Log[X]$ (uniform)

$$H(X,Y,Z) = H(X) + H(Y|X) + H(Z|X,Y)$$

Binary Entropy

- o X is Bern(p)
 - P(X=1) = p, P(X=0) = 1-p
- oH(X) = p log(1/p) + (1-p) log(1/(1-p))
- o Call this the binary entropy function
 - 0 h(p)

Mulual Information

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$= H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X)$$

$$I(X;Y) \ge 0 \quad \text{(independent)}$$

$$I(X;Y) \le H(X) \quad \text{(function)}$$

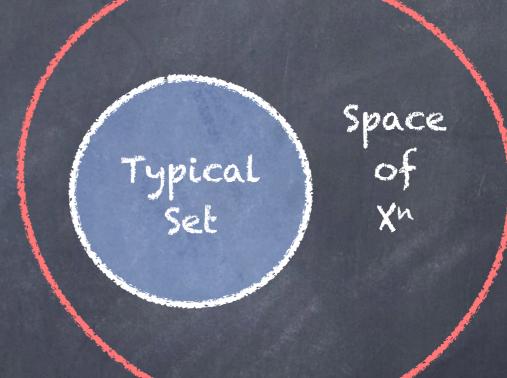
$$I(X;Y,Z) = I(X;Y) + I(X;Z|Y)$$

Data-processing Inequality

- o Markov chain: X-Y-Z
- $oI(X;Z) \leq I(X;Y)$

Lossiess Compression

o Enumerate the typical set:



- e Error if X" not typical (negligible probability)
- ® R ≈ H(X)

Typical Sel and AER

- $A = \{x^n : P(x^n) \approx 2^{-nH(X)}\}$
 - exponent within e of H(X)
- ø P(A) → 1 (law of large numbers)
 - o 1/n Σ_i log($P(X_i)$) \rightarrow E log $P(X_i) = -H(X)$
- @ |A | ≈ 2nH(X)

LOSSY COMPTESSION Rate-Distortion Theory

Average Distortion

- We need a relevant metric for lossy transmission
- o Bounded distortion function: d(x,y)
- o Average distortion:
 - $od(x^n,y^n)=1/n \sum_i d(x_i,y_i)$

PUZZLE

- o Given an n-bit random sequence
- o 1-bit distortion:
 - How many bits of description are needed to have no more than one bit of distortion?
 (n - ?)
- o 1-bit transmission:
 - o How much distortion can be achieved with only a one-bit description? (n/2 ?)

Definition of achievability

Rate R is achievable for distortion D if there exist n, f, and g operating at rate R such that

 $Ed(Xn,Yn) \leq D$

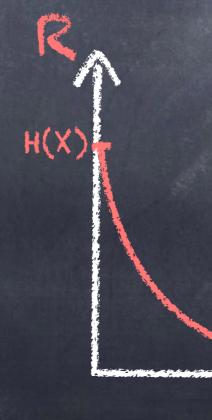
Rate-Distortion Theorem [Shannon]

$$R(D) = \min_{P_{Y|X}: \mathbf{E}d < D} I(X;Y)$$

Formula is still an optimization problem

@ Choose Pyx (given Px and d(x,y)):

OD>Ed(X,Y)



EXAMPLES

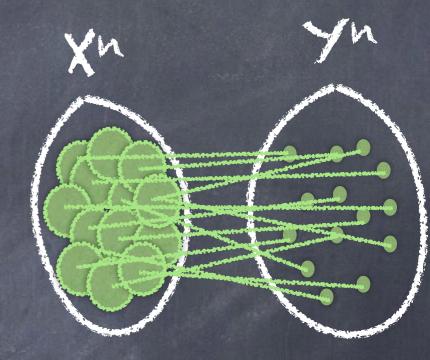
- o Binary signal, Hamming distortion:

 - @ Choice of Py|x is s.t. Px|y is BSC(D)
- o Gaussian signal, squared-error:

 - @ Choice of Py|x is s.t. Px|y is AGN(D)

Achievability Proof

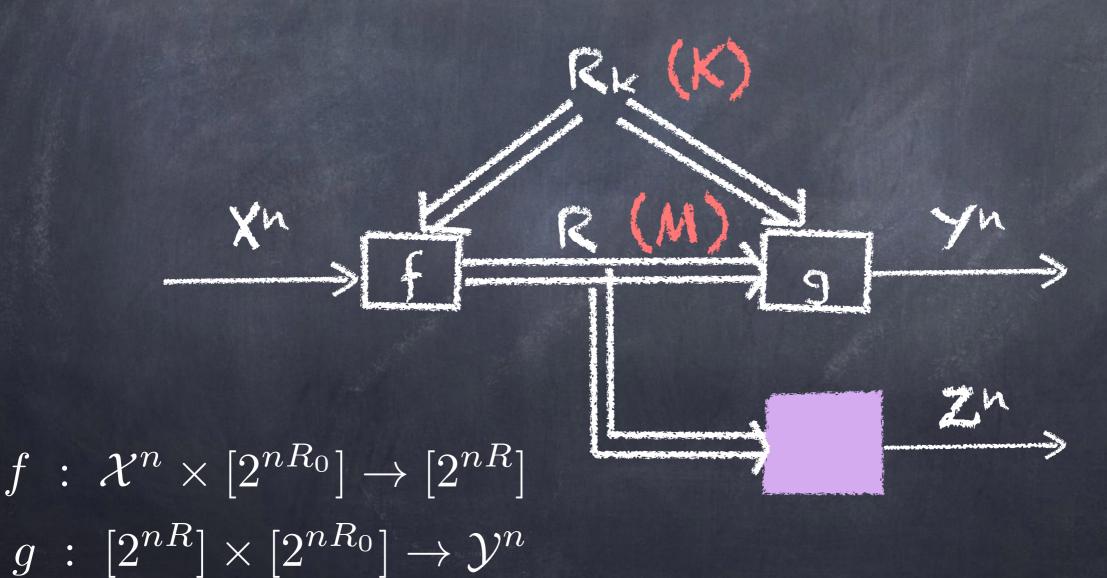
o General idea—Covering



Source Coding for Secrecy

Scilling

o Shannon cipher



rerformance Metric

- o Theory will include:
 - Lossy reconstruction
 - o Imperfect secrecy

- o Secrecy also measured by distortion
 - Lowest distortion achievable by the eavesdropper

Two distortion functions

- o Distortion at the intended receiver:
 - $od_1(x^n,y^n) = 1/n \sum_i d_1(x_i,y_i)$
- o Distortion at the eavesdropper
 - $od_2(x^n,z^n)=1/n \sum_i d_2(x_i,z_i)$

PESSIMISELE

Assume eavesdropper makes best use of the information:

$$D_2 = \min_{Z^n = z^n(M)} \mathbf{E} \, d_2(X^n, Z^n)$$

Definition of achievability

o (R,Rk,D1,D2) is achievable if there exists an n, f, and g operating at rates R and Rk such that

 $Ed_1(X^n, Y^n) \leq D_1$ $min(adversary) Ed_2(X^n, Z^n) \geq D_2$

Rate-Distortion Theory for Secrecy Systems

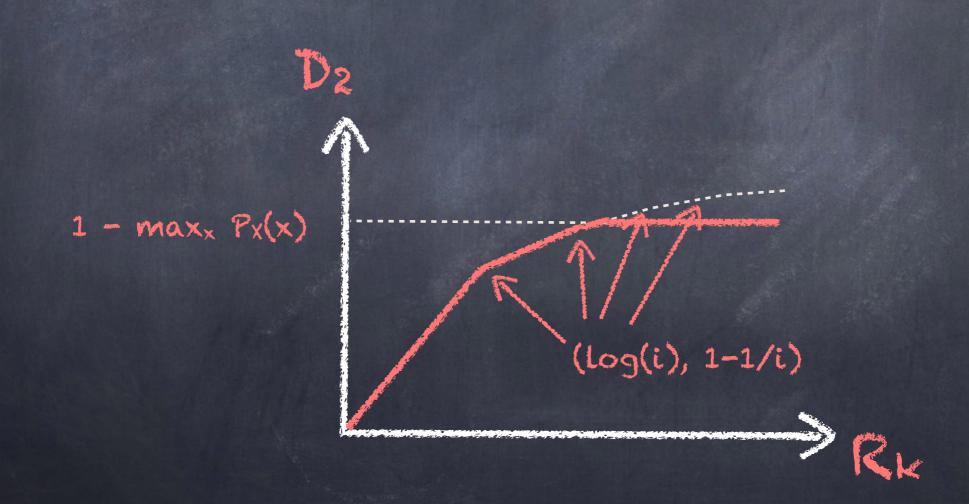
- o (R,Rk,D1,D2) achievable if and only if
 - a There exist U,V,Y s.t.
 - @ X-(U,V)-Y

Recall that we are given Px

- @ R ≥ I(X;U,V)
- @ Rk ≥ I(X,Y;V|U)
- $o \in d_1(X,Y) \leq D_1$
- $omin_{z(.)} \in d_2(X,z(U)) \geq D_2$

Hamming Distortion

@ Any source distribution, with D1=0:



Equivocation

Allernative Problem

- o No distortion at the eavesdropper
- o Measure secrecy by equivocation rate
 - $\Delta x = 1/n H(X^n M)$
- o Or, for Lossy compression
 - $\Delta X, y = 1/n H(X^n, y^n M)$

Recover equivocation from RD Theory

- e Equivocation rate is one special case of rate-distortion theory
- o Causal disclosure is necessary

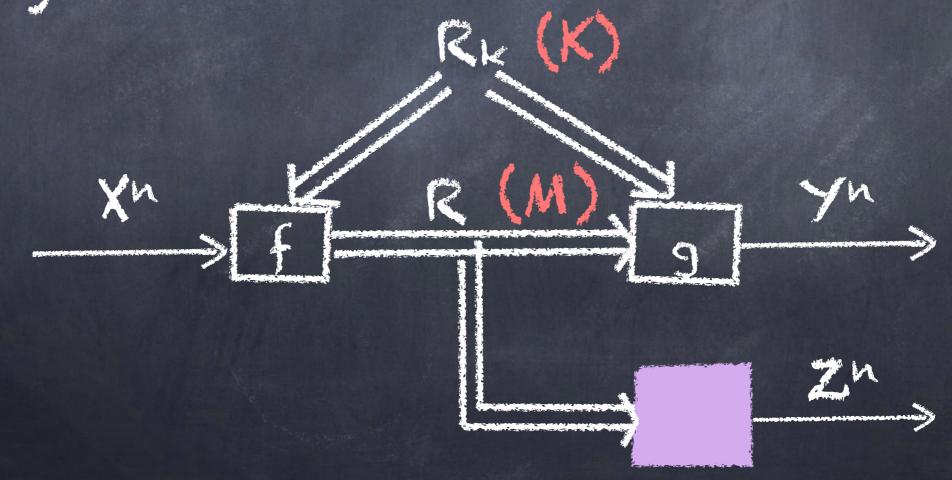
Log-loss function

- o Distortion function
 - od(x,z) = log 1/z(x)
 - o z is a distribution

Notice: $min_{z(m)} \in d(X,z(M)) = H(X|M)$ $min_{z(x,m)} \in log 1/z(x,m)$

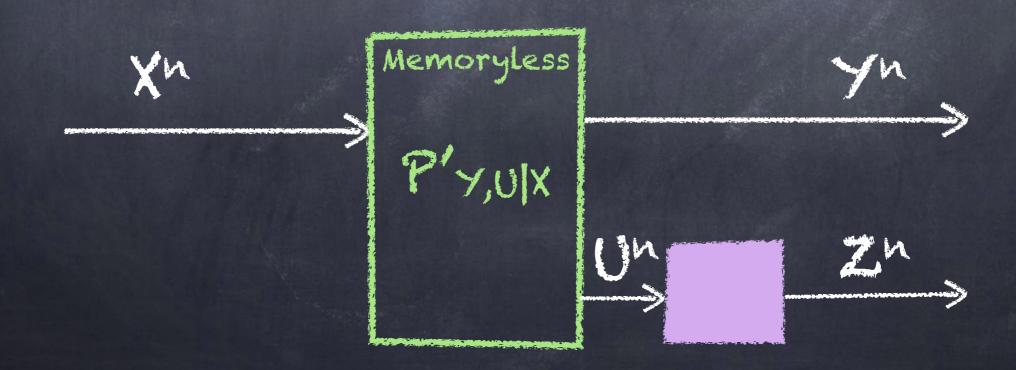
Synthetic hoise

RDSS with full causal disclosure extracts an intuitive communication system



Synthetic hoise

RDSS with full causal disclosure extracts an intuitive communication system



Embedding

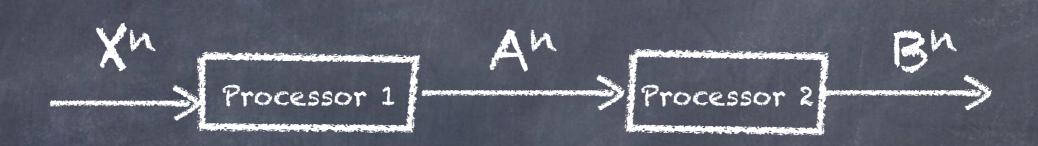
Online Penny Malching

- Two players attempt to guess a binary sequence (both must be correct to earn a point).
- o The sequence is revealed to Player 1.
- o [Gossner et. al.]

Optimal score

$$oh(V^*) + (1 - V^*) \log_2 3 = 1$$

Creneral Solutions



d_2					
		$-\infty$	0	k > 0	∞
d_1	$-\infty$		X - (A, U) - B		$X \perp B$
		$H(A) \ge I(X; A, B)$	$H(A) \ge I(X; A, U) + I(A; U)$	$H(A) \ge I(X; A, B) + I(A; B)$	
	0	$X \perp U, H(A X,U) = 0$	X - A - B	$X \perp B$	$X \perp B$
		$H(A) \ge I(X; A, B U)$			
	k > 0	$X \perp A$	$X \perp (A, B)$	$X \perp (A,B)$	$X \perp (A,B)$
		$H(A) \ge I(X; A, B)$			
	∞	$X \perp (A, B)$	$X \perp (A, B)$	$X \perp (A, B)$	$X \perp (A,B)$