Capacity and Zero-Error Capacity of the Chemical Channel with Feedback

Haim Permuter, Paul Cuff, Benjamin Van Roy, Tsachy Weissman

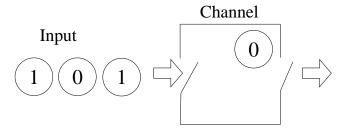
Stanford Univeristy

June 28, 2007

Focus of Talk

- Chemical Channel Feedback Capacity
 - Numerical Calculations
 - Analytic Solution for Trapdoor Channel

Zero-error Communication Scheme



Output

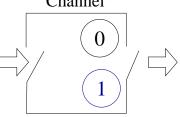
$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

3 / 23

Input

Channel



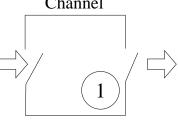
$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

$$x_1 = 1$$
,

3 / 23

Input

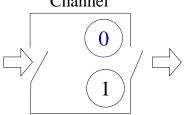


$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

 $x_1 = 1$, $s_1 = 1$, $y_1 = 0$,

Input

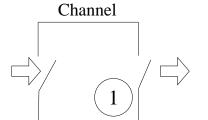


$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

 $x_1 = 1$, $s_1 = 1$, $y_1 = 0$,
 $x_2 = 0$,

Input

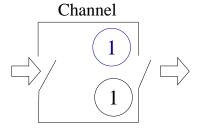


$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

 $x_1 = 1$, $s_1 = 1$, $y_1 = 0$,
 $x_2 = 0$, $s_2 = 1$, $y_2 = 0$,

Input



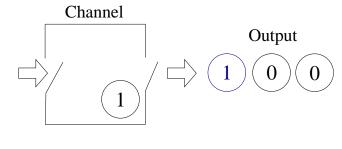
Output

$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

 $x_1 = 1$, $s_1 = 1$, $y_1 = 0$,
 $x_2 = 0$, $s_2 = 1$, $y_2 = 0$,
 $x_3 = 1$,

3 / 23



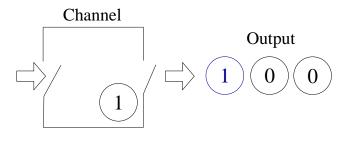
$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

 $x_1 = 1$, $s_1 = 1$, $y_1 = 0$,
 $x_2 = 0$, $s_2 = 1$, $y_2 = 0$,
 $x_3 = 1$, $x_3 = 1$, $x_3 = 1$.

3 / 23

Input



$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

 $x_1 = 1$, $s_1 = 1$, $y_1 = 0$,
 $x_2 = 0$, $s_2 = 1$, $y_2 = 0$,
 $x_3 = 1$, $x_3 = 1$, $x_3 = 1$.

Biochemical Interpretation [Berger 71]

The Chemical Channel

Balls are not equally likely to exit the channel.

Xt	s_{t-1}	$p(y_t=0 x_t,s_{t-1})$	$p(y_t=1 x_t,s_{t-1})$
0	0	1	0
0	1	p_1	$1 - p_1$
1	0	<i>p</i> ₂	$1 - p_2$
1	1	0	1

Special cases:

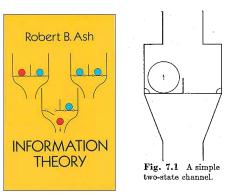
Trapdoor channel:
$$p_1 = p_2 = \frac{1}{2}$$
.

New vs. Old:
$$p_1 = 1 - p_2 = p_{switch}$$
.

'0' vs. '1':
$$p_1 = p_2 = p_{zero}$$
.

4 / 23

Introduced by David Blackwell in 1961. [Ash 65], [Ahlswede & Kaspi 87], [Ahlswede 98], [Kobayashi 02 & 03].



A "simple two-state channel." - Blackwell

Ideas for Communication without Feedback

• Repeat each bit three time: R = 1/3 bit.

6 / 23

Ideas for Communication without Feedback

- Repeat each bit three time: R = 1/3 bit.
- Repeat each bit twice: R = 1/2 bit. [Ahlswede & Kaspi 87]

Ideas for Communication without Feedback

- Repeat each bit three time: R = 1/3 bit.
- Repeat each bit twice: R = 1/2 bit. [Ahlswede & Kaspi 87]
- $C \approx 0.572$ bits per channel use. [Kobayashi & Morita 03]

6 / 23

Communication Setting (with feedback)

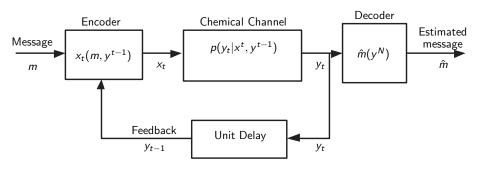


Figure: Communication with feedback

Feedback Capacity of FSC

Lower and upper bounds:

$$C_{FB} \geq \lim_{N \to \infty} \frac{1}{N} \max_{\{p(x_i|x^{i-1},y^{i-1})\}_{i=1}^{N}} \min_{s_0} I(X^N \to Y^N|s_0)$$

$$C_{FB} \leq \lim_{N \to \infty} \frac{1}{N} \max_{\{p(x_i|x^{i-1},y^{i-1})\}_{i=1}^{N}} \max_{s_0} I(X^N \to Y^N|s_0)$$

[Permuter, Weissman & Goldmith ISIT06]

Directed Information

Mutual Information

$$I(X^n; Y^n) = \sum_{i=1}^n I(X^n; Y_i | Y^{i-1})$$

Directed Information was defined by Massey in 1990.

$$I(X^n \to Y^n) \triangleq \sum_{i=1}^n I(X^i; Y_i | Y^{i-1})$$

Directed Information

Mutual Information

$$I(X^n; Y^n) = \sum_{i=1}^n I(X^n; Y_i | Y^{i-1})$$

Directed Information was defined by Massey in 1990.

$$I(X^n \to Y^n) \triangleq \sum_{i=1}^n I(X^i; Y_i | Y^{i-1})$$

Intuition [Massey 05]:

$$I(X^n; Y^n) = I(X^n \rightarrow Y^n) + I(Y^{n-1} \rightarrow X^n)$$

Feedback Capacity of Unifilar, Strongly Connected, FSC

Chemical channel has two other properties of interest.

- Unifilar [Ziv 85]: State is deterministic function of past state, input, and output.
- **2** Strongly connected: Any state s_t can be reached with positive probability from any other state s_{t-1} .

Consequence

Initial state doesn't matter; upper and lower bounds become equal.

$$C_{FB} = \lim_{N \to \infty} \frac{1}{N} \max_{\{p(x_i | x^{i-1}, y^{i-1})\}_{i=1}^N} I(X^N \to Y^N)$$

Feedback Capacity of Unifilar, Strongly Connected, FSC

$$C_{FB} = \lim_{N \to \infty} \frac{1}{N} \max_{\{p(x_t|x^{t-1},y^{t-1})\}_{t=1}^{N}} I(X^N \to Y^N)$$

$$= \lim_{N \to \infty} \frac{1}{N} \max_{\{p(x_t|x^{t-1},y^{t-1})\}_{t=1}^{N}} \sum_{t=1}^{N} I(X^t; Y_t|Y^{t-1})$$

$$= \lim_{N \to \infty} \frac{1}{N} \max_{\{p(x_t|s_{t-1},y^{t-1})\}_{t=1}^{N}} \sum_{t=1}^{N} I(X_t; S_{t-1}; Y_t|Y^{t-1})$$

$$= \sup_{\{p(x_t|s_{t-1},y^{t-1})\}_{t\geq 1}} \liminf_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} I(X_t; S_{t-1}; Y_t|Y^{t-1})$$

Dynamic Programming (infinite horizon, average reward)

Variable Assignments

State:
$$\beta_t = p(s_t|y^t)$$

Action:
$$u_t = p(x_t|s_{t-1})$$

Disturbance: $w_t = y_{t-1}$

Dynamic Programming Requirements

State evolution:

$$\beta_t = F(\beta_{t-1}, u_t, w_t)$$

Reward function per unit time:

$$g(\beta_{t-1}, u_t) = I(X_t, S_{t-1}; Y_t | \beta_{t-1})$$

Similar work: [Yang, Kavčić & Tatikonda 05], [Chen & Berger 05]

Dynamic Programming (infinite horizon, average reward)

Dynamic Programming Operator T

The dynamic programming operator T is given by

$$T \circ J(\beta) = \sup_{u \in \mathcal{U}} \left(g(\beta, u) + \int P_w(dw|\beta, u) J(F(\beta, u, w)) \right).$$

Bellman Equation

If there exist a function $J(\beta)$ and constant ρ that satisfy

$$J(\beta) = T \circ J(\beta) - \rho$$

then ρ is the optimal infinite horizon average reward.

Feedback Capacity of Chemical Channel (20 iterations)

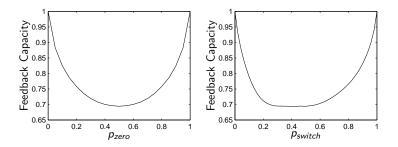


Figure: Feedback capacity of chemical channel as functions of two parameters.

Trapdoor channel feedback capacity found at $p_{zero} = 0.5$ and $p_{switch} = 0.5$.

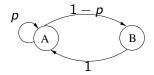
Trapdoor channel: $C_{FB} \approx 0.694$ bits

(D) (A) (E) (E) E 990

Trapdoor channel: $C_{FB} \approx 0.694$ bits

Homework Question

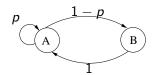
Entropy rate. Find the maximum entropy rate of the following two-state Markov chain:



Trapdoor channel: $C_{FB} \approx 0.694$ bits

Homework Question

Entropy rate. Find the maximum entropy rate of the following two-state Markov chain:



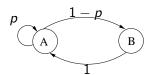
Solution: (Golden Ratio:
$$\phi=\frac{\sqrt{5}+1}{2}$$
)
$$p^{\star}=\phi-1=\frac{1}{\phi}$$

$$H(\mathcal{X}) = \log \phi = 0.6942...$$
 bits

Trapdoor channel: $C_{FR} \approx 0.694$ bits

Homework Question

Entropy rate. Find the maximum entropy rate of the following two-state Markov chain:



Solution: (Golden Ratio:
$$\phi=\frac{\sqrt{5}+1}{2}$$
)
$$p^{\star}=\phi-1=\frac{1}{\phi}$$

$$H(\mathcal{X})=\log\phi=0.6942... \text{ bits}$$

15 / 23

Case
$$\tilde{x}_t = 0$$

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$

Case
$$\tilde{x}_t = 0$$

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$

Proof:
$$x_t = s_{t-1} = y_t = s_t$$

Case
$$\tilde{x}_t = 0$$

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$
Proof: $x_t = s_{t-1} = y_t = s_t$

$$x_{t-1} \oplus s_{t-2} = y_{t-1} \oplus s_{t-1}$$

Case
$$\tilde{x}_t = 0$$

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$

$$\begin{aligned} & \text{Proof:} \quad & x_t = s_{t-1} = y_t = s_t \\ & x_{t-1} \oplus s_{t-2} = y_{t-1} \oplus s_{t-1} \\ & x_{t-1} \oplus s_{t-2} = y_{t-1} \oplus y_t \end{aligned}$$

Rename channel input: $\tilde{x}_t = x_t \oplus s_{t-1}$. Rename channel output: $\tilde{y}_t = y_t \oplus y_{t-1}$.

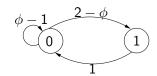
Case
$$\tilde{x}_t = 0$$

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$

$$\begin{aligned} & \text{Proof:} \quad & x_t = s_{t-1} = y_t = s_t \\ & x_{t-1} \oplus s_{t-2} = y_{t-1} \oplus s_{t-1} \\ & x_{t-1} \oplus s_{t-2} = y_{t-1} \oplus y_t \end{aligned}$$

Use Markov input process

Case
$$ilde{x}_t = 1$$
 $ilde{x}_t = 1$ \Rightarrow $ilde{x}_{t-1} = 0$



Decoding Example

Decoding rules

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$

$$\tilde{x}_t = 1 \quad \Rightarrow \quad \tilde{x}_{t-1} = 0$$

 \tilde{x}^n : 0 \tilde{y}^n : 1 1 0 1 0 0 1

Decoding Example

Decoding rules

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$

$$\tilde{x}_t = 1 \quad \Rightarrow \quad \tilde{x}_{t-1} = 0$$

 \tilde{x}^n : 0 0 \tilde{y}^n : 1 1 0 1 0 0 1

Decoding Example

Decoding rules

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$

$$\tilde{x}_t = 1 \quad \Rightarrow \quad \tilde{x}_{t-1} = 0$$

 \tilde{x}^n : 1 0 0

 \tilde{y}^n : 1 1 0 1 0 0 1

Decoding Example

Decoding rules

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$

$$\tilde{x}_t = 1 \quad \Rightarrow \quad \tilde{x}_{t-1} = 0$$

 \tilde{x}^n : 0 1 0 0 \tilde{y}^n : 1 1 0 1 0 0 1

Decoding Example

Decoding rules

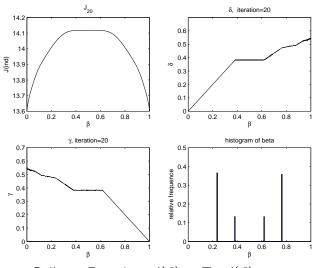
$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$

$$\tilde{x}_t = 1 \quad \Rightarrow \quad \tilde{x}_{t-1} = 0$$

 \tilde{x}^n : 1 0 1 0 0

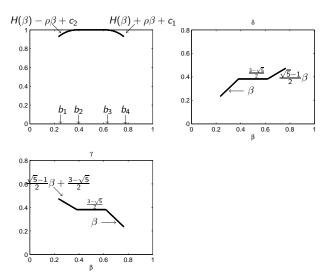
 \tilde{y}^n : 1 1 0 1 0 0 1

Dynamic Programming 20th Value iteration



Bellman Equation: $J(\beta) = T \circ J(\beta) - \rho$.

Conjectured Solution to the Bellman Equation



Bellman Equation: $J(\beta) = T \circ J(\beta) - \rho$.

Proven Feedback Capacity

Bellman Equation is satisfied.

Trapdoor channel feedback capacity:

$$C_{FB} = \log \phi = 0.6942...$$
 bits

Focus of Talk

- Chemical Channel Feedback Capacity
 - Numerical Calculations
 - Analytic Solution for Trapdoor Channel

Zero-error Communication Scheme

\tilde{X}^n	flag	index	
0010100010100101			

 $\begin{tabular}{ll} \blacksquare & Message maps to unique sequence without repeating $1's$. \\ \end{tabular}$

 \tilde{x}^{n+1} flag index 00101000101001010

- Message maps to unique sequence without repeating 1's.
- Concatenate with 0.

\tilde{x}^{n+1}	flag	index
00101000101001010	XXX	

- Message maps to unique sequence without repeating 1's.
- Concatenate with 0.
- Indicate if "inconsistency" was observed.

\tilde{x}^{n+1}	flag	index
00101000101001010	XXX	0100101000

- Message maps to unique sequence without repeating 1's.
- Concatenate with 0.
- Indicate if "inconsistency" was observed.
- If inconsistency exists, send index of inconsistency.

$\tilde{\chi}^{n+1}$	flag	index
00101000101001010	XXX	0100101000
$n{+}1$	3	$\log n/C_{FB}$

- Message maps to unique sequence without repeating 1's.
- Concatenate with 0.
- Indicate if "inconsistency" was observed.
- If inconsistency exists, send index of inconsistency.

$\tilde{\chi}^{n+1}$	flag	index
00101000101001010	XXX	0100101000
n+1	3	$\log n/C_{FB}$

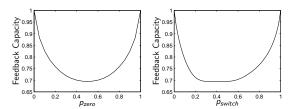
Number of messages

How many binary sequences of length n without repeating 1's? Fibonachi sequence: $f_n \doteq \phi^n$.

- Message maps to unique sequence without repeating 1's.
- Concatenate with 0.
- Indicate if "inconsistency" was observed.
- If inconsistency exists, send index of inconsistency.

Conclusion

Chemical Channel



Trapdoor channel

$$C_{FB} = \log \phi = 0.6942...$$
 bits

• Zero-error communication scheme

\tilde{x}^{n+1}	flag	index
00101000101001010	XXX	0100101000