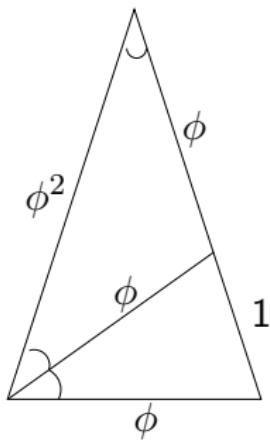


Investigating the Fundamental Communication Burden of Distributed Cooperation

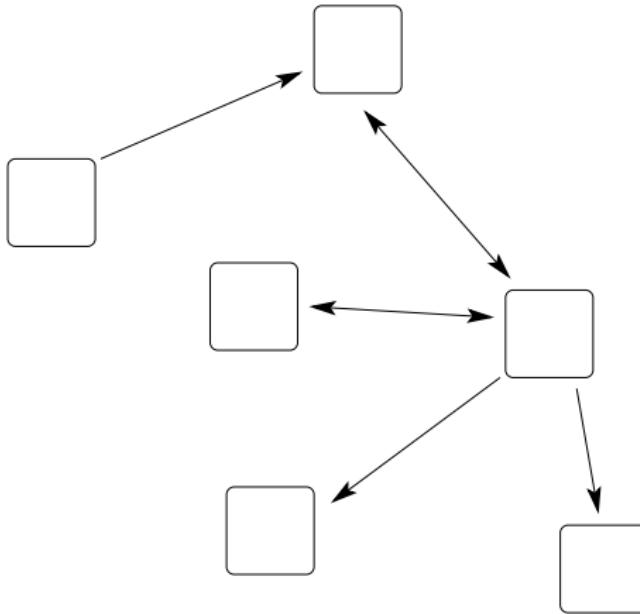
Paul Cuff
(with Tom Cover and Haim Permuter)



Stanford University

February 11, 2009

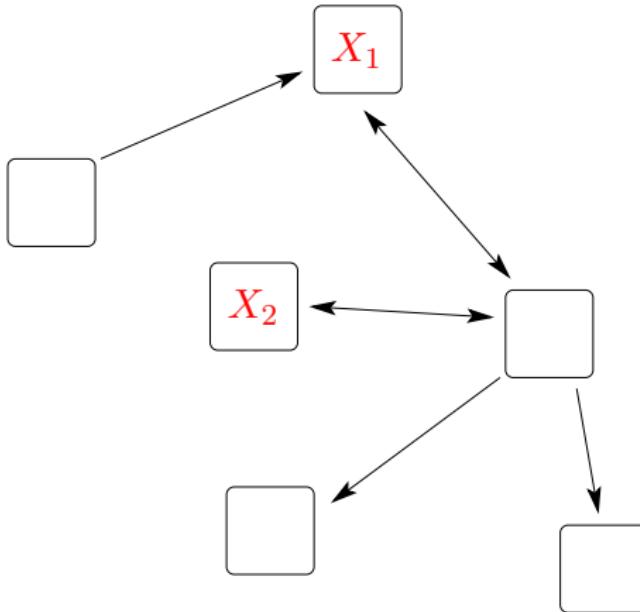
Overview



Other work moving information in networks:

- The Gossiping Dons Problem [Bollobas, The Art of Mathematics]
- Distributed Average Consensus

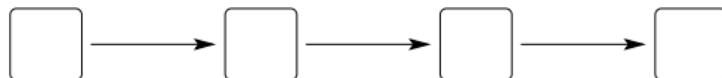
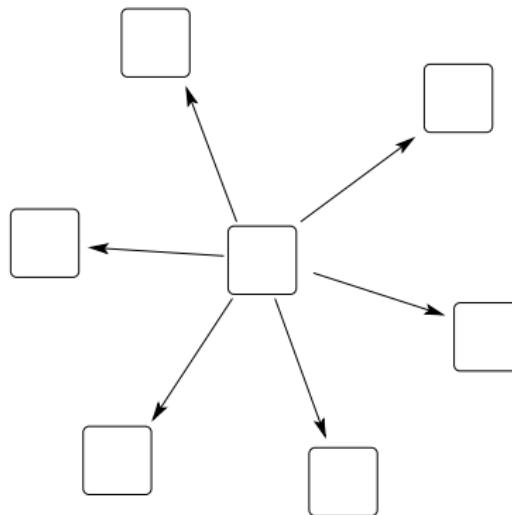
Overview



Other work moving information in networks:

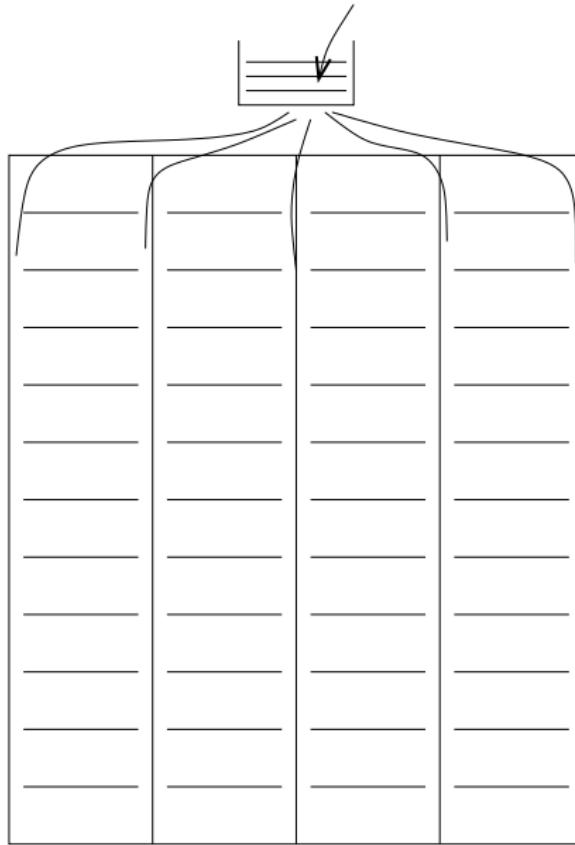
- The Gossiping Dons Problem [Bollobas, The Art of Mathematics]
- Distributed Average Consensus

Talk Assignment in Networks



Computation tasks numbered $1, \dots, k$ must be assigned uniquely.

Data Center

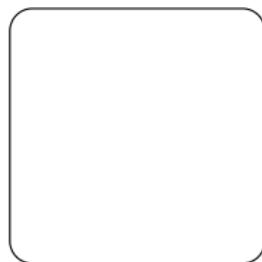


Two Nodes

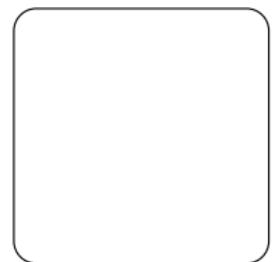
Tasks are assigned to numbers.

$$X \in \{1, 2\}$$

$$X \sim \text{Unif}$$



R bits/task



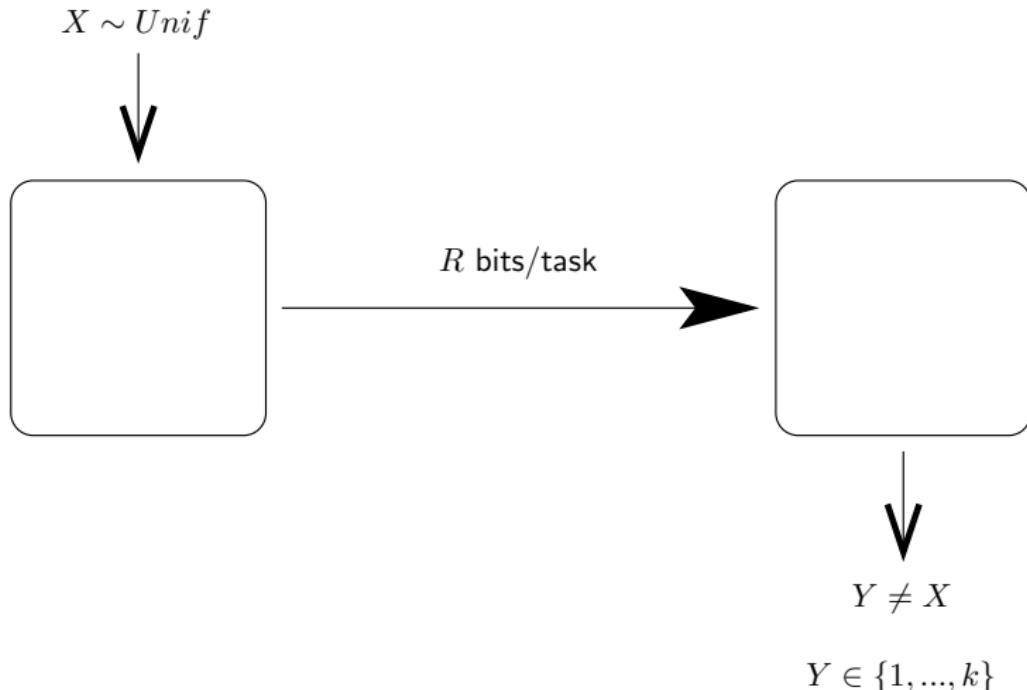
$$Y \neq X$$

$$Y \in \{1, 2\}$$

Two Nodes

Tasks are assigned to numbers.

$$X \in \{1, \dots, k\}$$



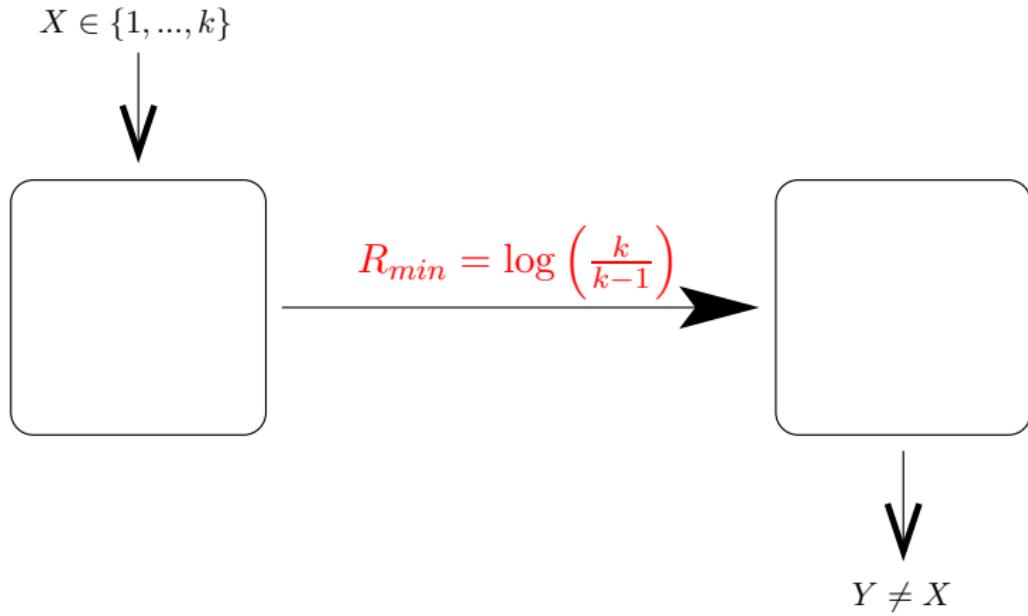
Rate-Distortion Result

$$R_{min} = \min_{p(y|x)} I(X; Y)$$

such that $X \neq Y$ with probability 1.

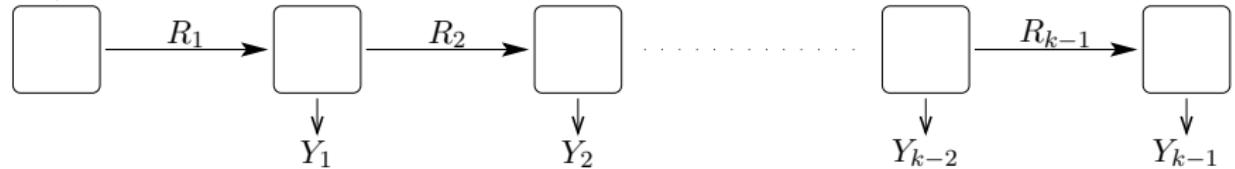
Two Node Result

Optimal two node task assignment rate:



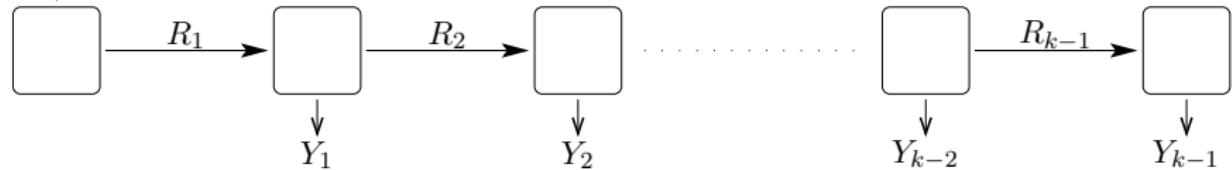
Cascade - One Assigned

$$X \in \{1, \dots, k\}$$



Cascade - One Assigned

$$X \in \{1, \dots, k\}$$



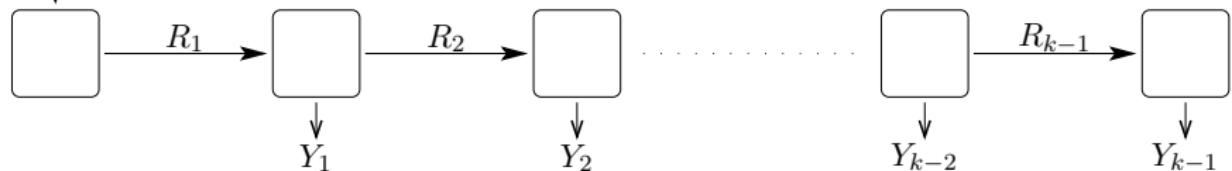
Optimal Communication:

$$X \xrightarrow{R = \log \left(\frac{k}{k-1} \right)} Y_{k-1}$$
$$X \xrightarrow{R = \log \left(\frac{k-1}{k-2} \right)} Y_{k-2}$$

⋮

Cascade - One Assigned

$$X \in \{1, \dots, k\}$$

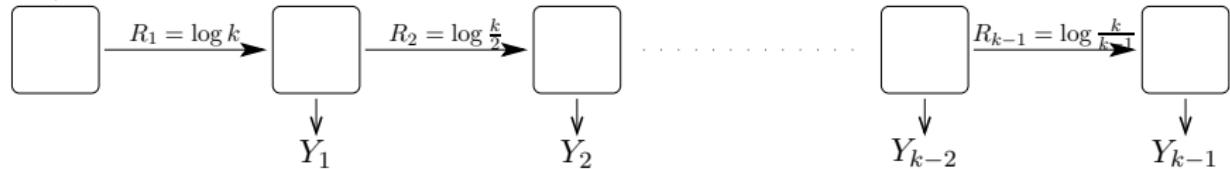


Optimal Communication:

$$R = \log \left(\frac{k}{k-1} \right) \rightarrow Y_{k-1}$$
$$R = \log \left(\frac{k-1}{k-2} \right) \rightarrow Y_{k-2}$$
$$\vdots$$
$$R_{k-1} = \log \left(\frac{k}{k-1} \right),$$
$$R_{k-2} = \log \left(\frac{k}{k-1} \right) + \log \left(\frac{k-1}{k-2} \right) = \log \left(\frac{k}{k-2} \right),$$
$$R_i = \log \left(\frac{k}{i} \right).$$

Cascade - One Assigned

$$X \in \{1, \dots, k\}$$

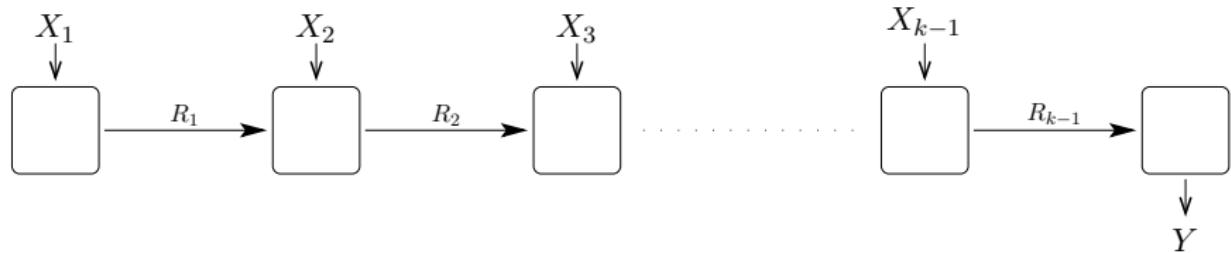


Sum rate:

$$\begin{aligned} R &= \sum_{i=1}^{k-1} \log \left(\frac{k}{i} \right) \\ &= k \log k - \sum_{i=1}^k \log i \\ &= k \log k - \log k! \\ &\approx k \log k - \log \left(\frac{k}{e} \right)^k \\ &= k \log e. \end{aligned}$$

Linear in k

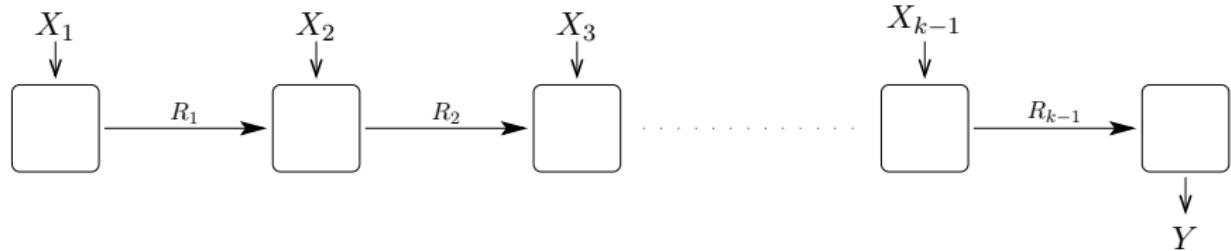
Cascade - All But One Assigned (open problem)



X_i unique in $\{1, \dots, k\}$ for all i .

Y must be the remaining task.

Cascade - All But One Assigned (open problem)



X_i unique in $\{1, \dots, k\}$ for all i .
 Y must be the remaining task.

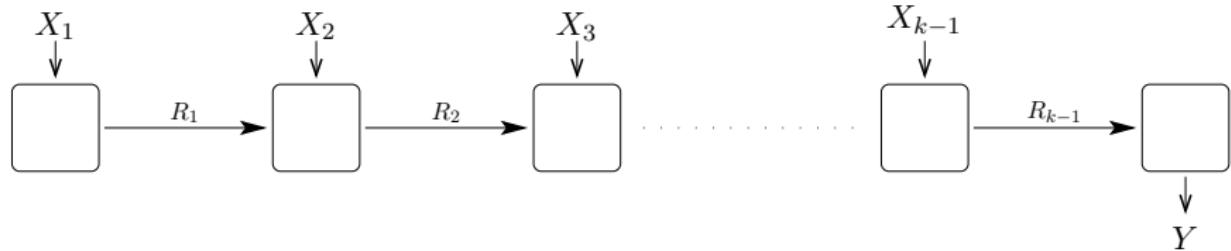
Idea - Accumulate information:

$$R_1 = \log(k-1),$$

$$R_2 = \log(k-1) + \log(k-2) - \log 2,$$

$$R_i = \log \binom{k-1}{i}.$$

Cascade - All But One Assigned (open problem)



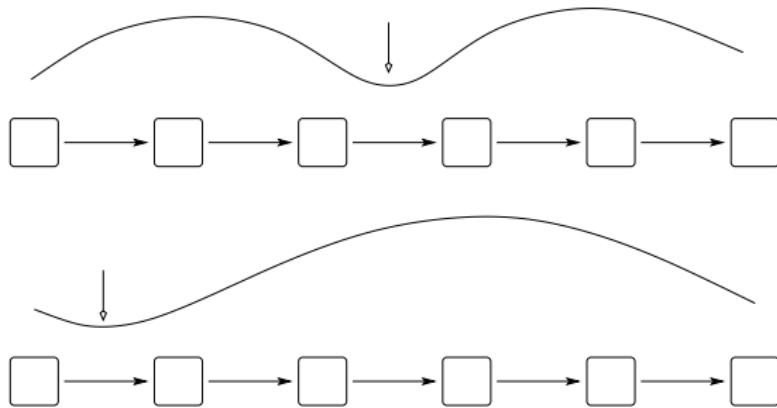
X_i unique in $\{1, \dots, k\}$ for all i .

Y must be the remaining task.

Better Idea - Accumulate mod k sum:

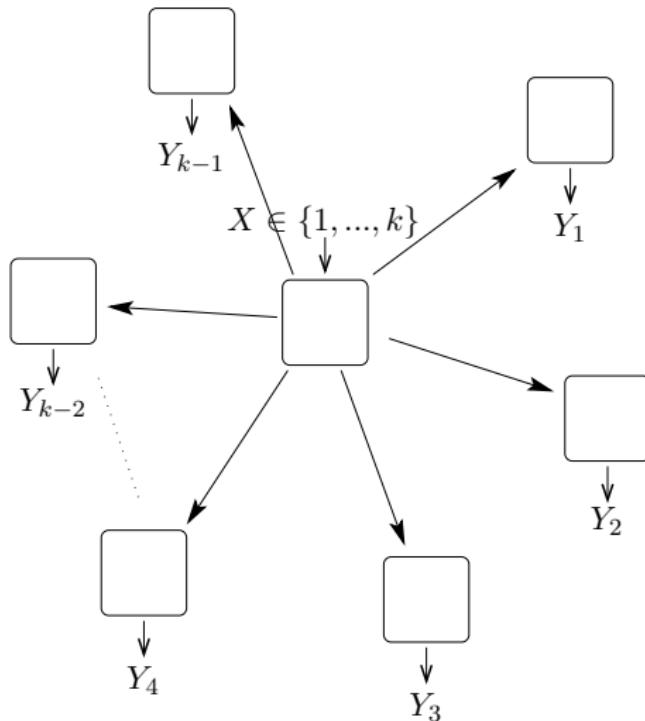
$$R_i < \log k, \text{ for all } i.$$

Lower Bounds



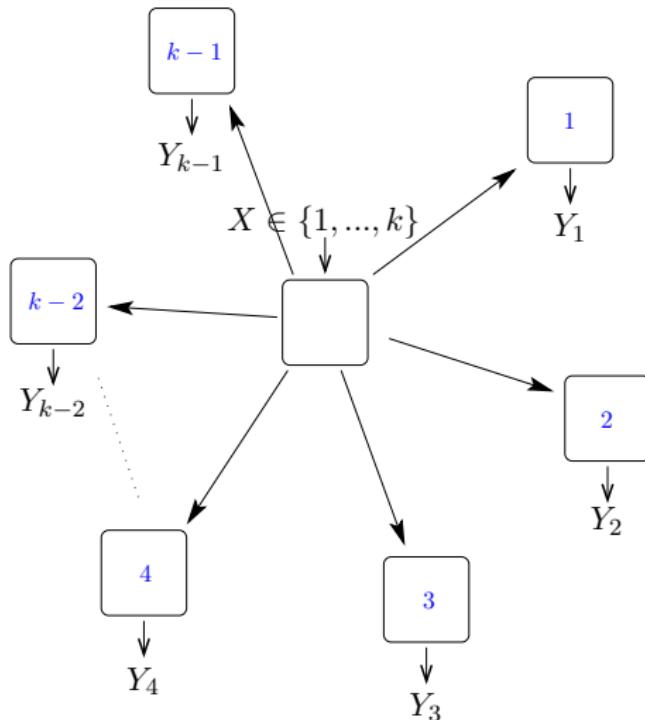
$$R_i \geq \log(i+1). \quad \sum_{i=1}^{k-1} R_i \geq \approx k \log \frac{k}{e}.$$

Star Network



Try $R_i = \log \frac{k}{k-1}$ for all i . (Doesn't work)

Star Network

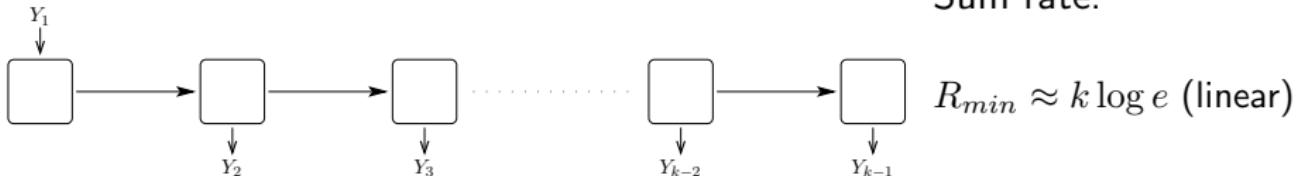


Try $R_i = \log \frac{k}{k-1}$ for all i . (Doesn't work)

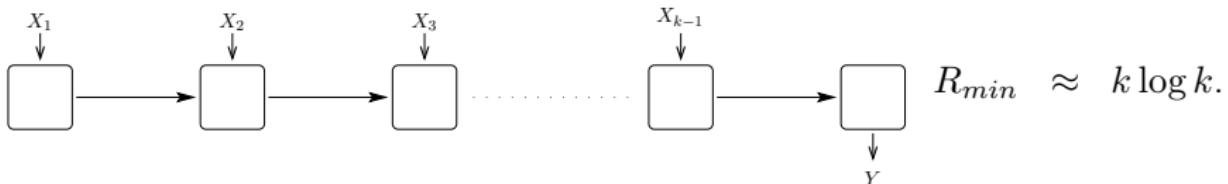
Assign Default Tasks: $R_i = h\left(\frac{1}{k}\right) \approx \frac{\log k}{k}$.

Task Assignment Summary

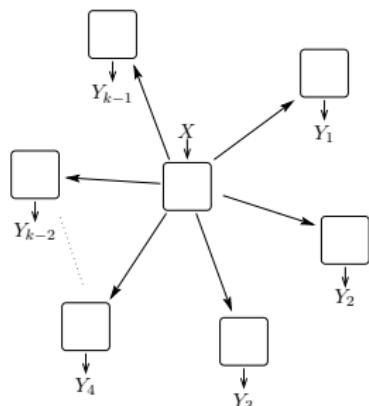
Sum rate:



$$R_{min} \approx k \log e \text{ (linear)}$$



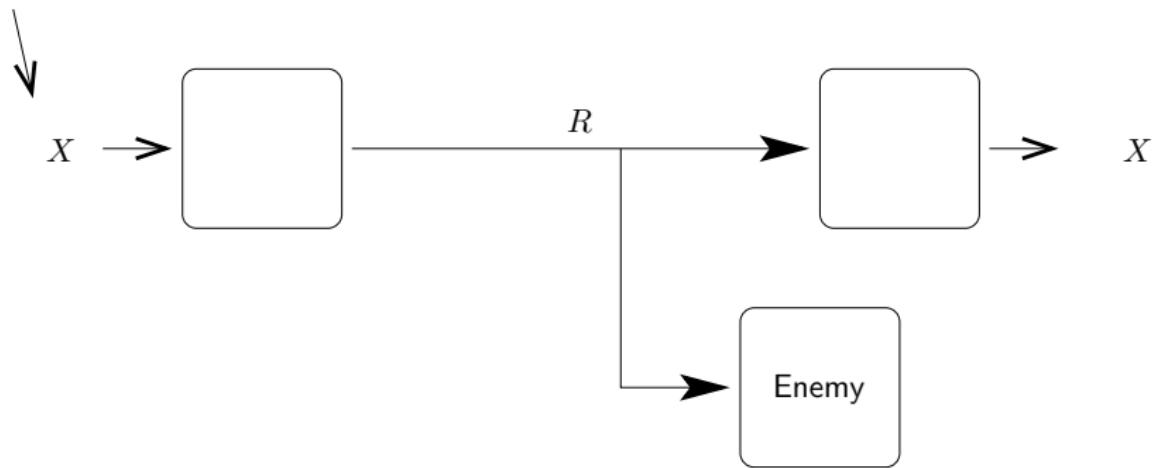
$$R_{min} \approx k \log k.$$



$$R_{min} \approx \log k.$$

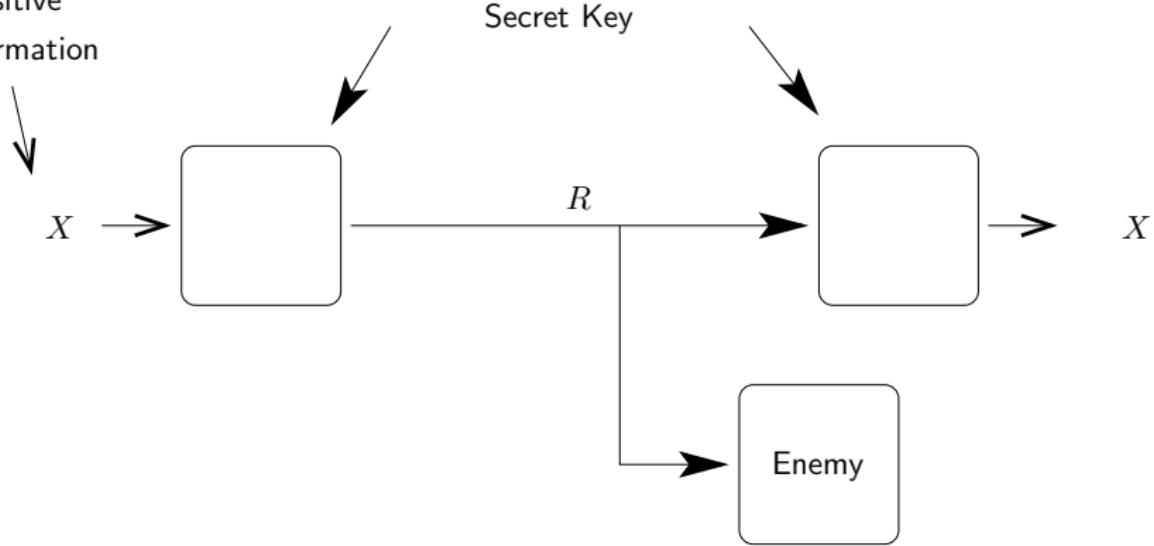
Encryption

Sensitive
Information



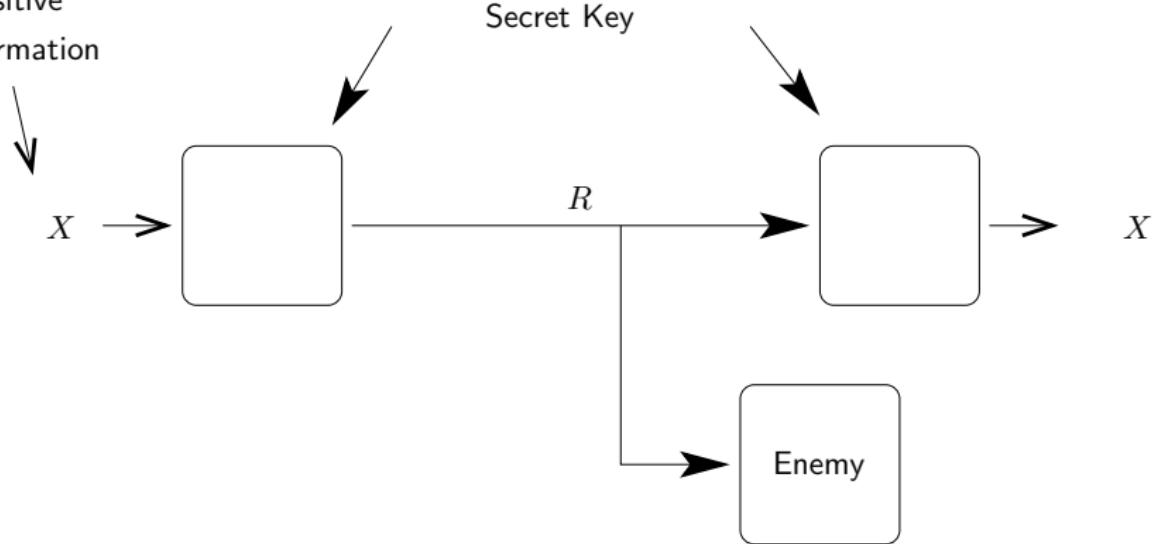
Encryption

Sensitive
Information



Encryption

Sensitive
Information



$$R_1 = R_2 = H(X).$$

Game Theory

Why keep a secret?

How about Game Theory?

		Enemy	
		0	1
Me	0	1	2
	1	3	-1

□

Game Theory

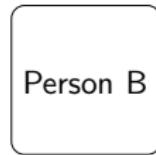
Why keep a secret?

How about Game Theory?

		Enemy	
		0	1
My team $p(x, y)$	00	1	2
	01	3	-1
	10	0	1
	11	-1	0

□

Team Action



Isolated Participants:

$$p(x)p(y)$$

Team Action

Isolated Participants:

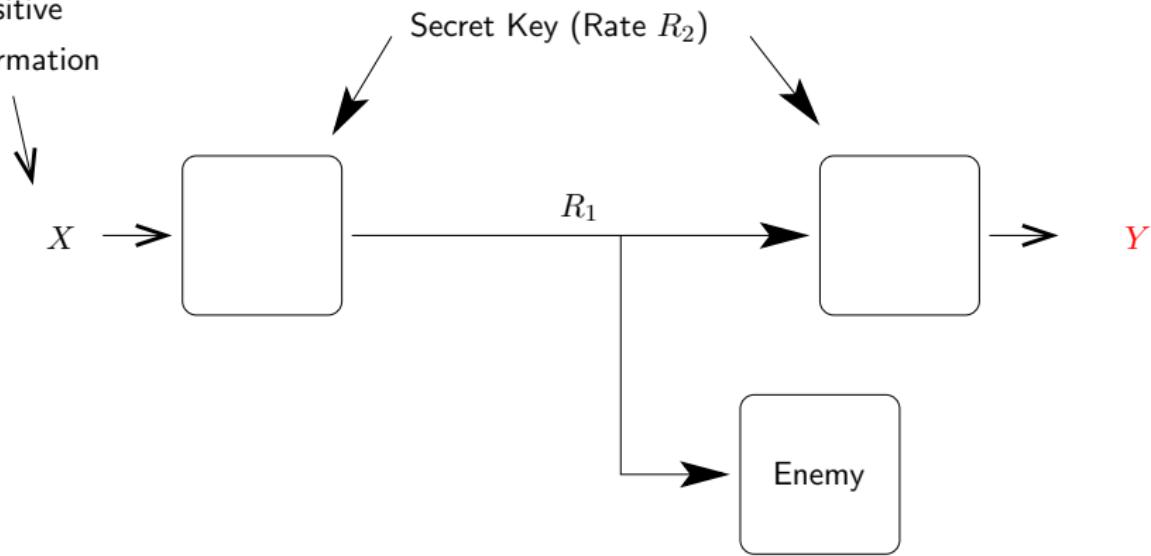
$$p(x)p(y)$$

With Communication:

$$p(x, y)$$

Relaxed Encryption

Sensitive
Information



Goals:

- ① Y correlated with X according to desired $p(y|x)$.
- ② Enemy knows nothing about X or Y .

Relaxed Encryption Theorem

Theorem

For any source distribution $p_0(x)$ and any desired correlation $p(y|x)$:

Communication:

$$R_1 \geq I(X; U).$$

Encryption:

$$R_2 \geq I(X, Y; U).$$

where U is some random variable
that separates X and Y in the Markov sense.
(i.e. $X - U - Y$ form a Markov chain.)

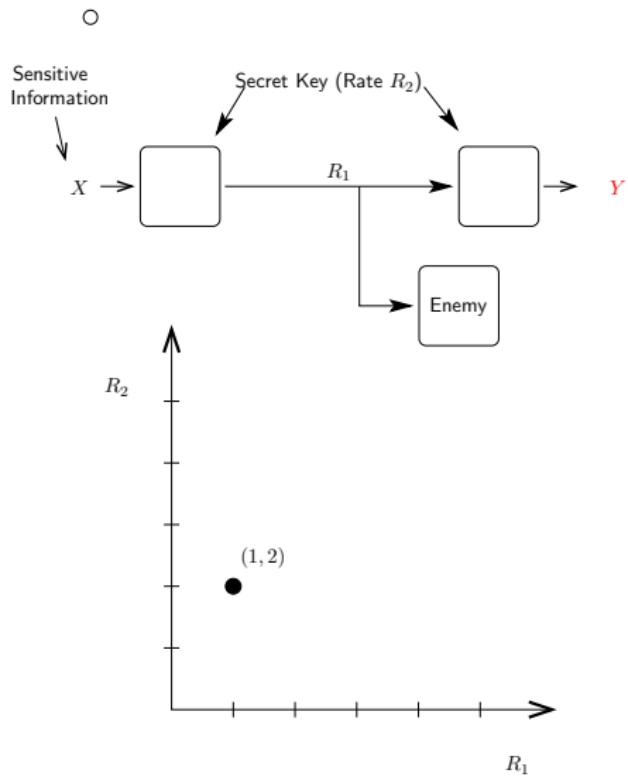
Example

Task assignment in an adversarial setting.

Virus Scanner.

$$X \sim \text{Unif}\{1, \dots, k\}.$$

Y needs to be different from X and **random among the choices**.



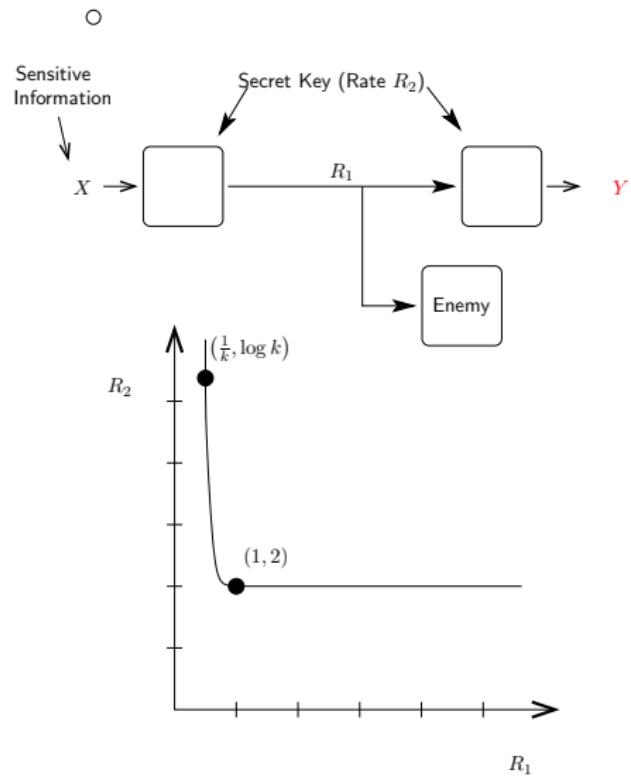
Example

Task assignment in an adversarial setting.

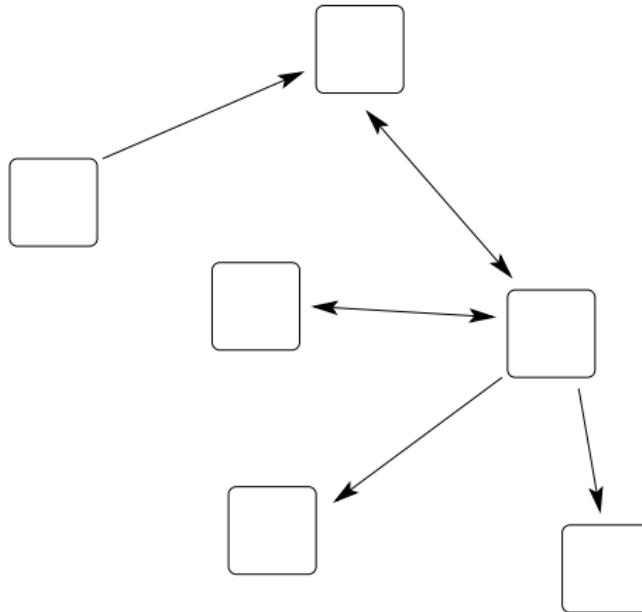
Virus Scanner.

$$X \sim \text{Unif}\{1, \dots, k\}.$$

Y needs to be different from X and **random among the choices**.



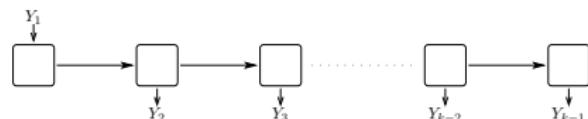
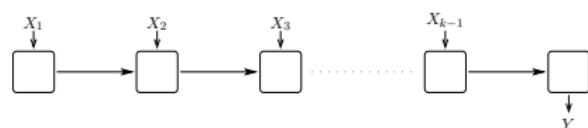
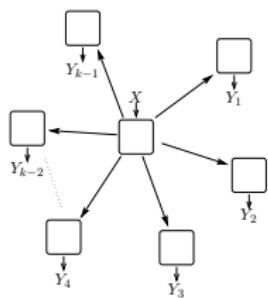
Recap



- Tools: Random coding, auxiliary variables, common randomness.
- Different networks require very different techniques.

Summary

Non-adversarial:



Adversarial:

Two Nodes:

- Achieve Correlated $Y \sim p(y|x)$
- Secret key required
- Tradeoff between communication and secret key

Fundamental Limits:

- Communication: $R_1 > I(X; Y)$.
- Secret key: $R_2 > C(X; Y)$.

Game Theory Perspective for Encryption