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Overview

Other work moving information in networks:

The Gossiping Dons Problem [Bollobas, The Art of Mathematics]

Distributed Average Consensus
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Other work moving information in networks:

The Gossiping Dons Problem [Bollobas, The Art of Mathematics]
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Talk Assignment in Networks

Computation tasks numbered 1, ..., k must be assigned uniquely.
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Data Center
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Two Nodes

Tasks are assigned to numbers.

R bits/task

X ∈ {1, 2}

X ∼ Unif

Y 6= X

Y ∈ {1, 2}
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Two Nodes
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R bits/task

X ∈ {1, ..., k}

X ∼ Unif

Y 6= X

Y ∈ {1, ..., k}
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Rate-Distortion Result

Rmin = min
p(y|x)

I(X ; Y )

such that X 6= Y with probability 1.
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Two Node Result

Optimal two node task assignment rate:

Rmin = log
(

k

k−1

)

X ∈ {1, ..., k}

Y 6= X
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Cascade - One Assigned

R1 R2 Rk−1

X ∈ {1, ..., k}

Y1 Y2 Yk−2 Yk−1
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Cascade - One Assigned

R1 R2 Rk−1

X ∈ {1, ..., k}
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Cascade - One Assigned

R1 R2 Rk−1

X ∈ {1, ..., k}

Y1 Y2 Yk−2 Yk−1

Optimal Communication:

X Yk−1

Yk−2

R = log
(

k

k−1

)

R = log
(

k−1
k−2
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Rk−1 = log

„

k

k − 1

«
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Rk−2 = log

„

k

k − 1

«

+ log

„

k − 1
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= log

„
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k
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Cascade - One Assigned

R1 = log k R2 = log k

2
Rk−1 = log k

k−1

X ∈ {1, ..., k}

Y1 Y2 Yk−2 Yk−1

Sum rate:

R =
k−1
∑

i=1

log

(

k

i

)

= k log k −
k

∑

i=1

log i

= k log k − log k!

≈ k log k − log

(

k

e

)k

= k log e. Linear in k
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Cascade - All But One Assigned (open problem)

R1 R2 Rk−1

X1 X2 X3
Xk−1

Y

Xi unique in {1, ..., k} for all i.
Y must be the remaining task.

Paul Cuff (Stanford University) Distributed Cooperation February 11, 2009 11 / 22



Cascade - All But One Assigned (open problem)

R1 R2 Rk−1

X1 X2 X3
Xk−1

Y

Xi unique in {1, ..., k} for all i.
Y must be the remaining task.

Idea - Accumulate information:

R1 = log(k − 1),

R2 = log(k − 1) + log(k − 2) − log 2,

Ri = log

(

k − 1

i

)

.
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Cascade - All But One Assigned (open problem)

R1 R2 Rk−1

X1 X2 X3
Xk−1

Y

Xi unique in {1, ..., k} for all i.
Y must be the remaining task.

Better Idea - Accumulate mod k sum:

Ri < log k, for all i.
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Lower Bounds

Ri ≥ log(i + 1).
∑

k−1
i=1 Ri ≥≈ k log k

e
.
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Star Network

X ∈ {1, ..., k} Y1

Y2

Y3

Y4

Yk−2

Yk−1

Try Ri = log k

k−1
for all i. (Doesn’t work)
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Star Network

X ∈ {1, ..., k} Y1

Y2

Y3

Y4

Yk−2

Yk−1

1

2

3
4

k − 2

k − 1

Try Ri = log k

k−1
for all i. (Doesn’t work)

Assign Default Tasks: Ri = h
(

1
k

)

≈ log k

k
.
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Task Assignment Summary
Y1

Y2 Y3 Yk−2 Yk−1

X1 X2 X3
Xk−1

Y

replacements

X Y1

Y2

Y3

Y4

Yk−2

Yk−1

Sum rate:

Rmin ≈ k log e (linear)

Rmin ≈ k log k.

Rmin ≈ log k.
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Encryption

X X
R

Enemy

Sensitive

Information
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Encryption

X X
R

Enemy

Secret Key
Sensitive

Information
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Encryption

X X
R

Enemy

Secret Key
Sensitive

Information

R1 = R2 = H(X).

Paul Cuff (Stanford University) Distributed Cooperation February 11, 2009 15 / 22



Game Theory

Why keep a secret?

How about Game Theory?

1 2

3 −1

0 1

0

1

Enemy

Me

p(x)

Paul Cuff (Stanford University) Distributed Cooperation February 11, 2009 16 / 22



Game Theory

Why keep a secret?

How about Game Theory?

1 2

3 −1

0 1

Enemy

00

01

My team

p(x, y)

0 1

−1 0

10

11
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Team Action

Person A Person B

Isolated Participants:
p(x)p(y)
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Team Action

Person A Person B

Isolated Participants:
p(x)p(y)

With Communication:
p(x, y)
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Relaxed Encryption

X Y
R1

Enemy

Secret Key (Rate R2)
Sensitive

Information

Goals:
1 Y correlated with X according to desired p(y|x).
2 Enemy knows nothing about X or Y .
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Relaxed Encryption Theorem

Theorem

For any source distribution p0(x) and any desired correlation p(y|x):

Communication:
R1 ≥ I(X;U).

Encryption:
R2 ≥ I(X,Y ;U).

where U is some random variable
that separates X and Y in the Markov sense.
(i.e. X − U − Y form a Markov chain.)
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Example

Task assignment in an adversarial setting.
Virus Scanner.

X ∼ Unif{1, ..., k}.

Y needs to be different from X

and random among the choices.

X Y
R1

Enemy

Secret Key (Rate R2)
Sensitive
Information

R1

R2

(1, 2)
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Example

Task assignment in an adversarial setting.
Virus Scanner.

X ∼ Unif{1, ..., k}.

Y needs to be different from X

and random among the choices.

X Y
R1

Enemy

Secret Key (Rate R2)
Sensitive
Information

R1

R2

(1, 2)

(

1
k
, log k

)
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Recap

Tools: Random coding, auxiliary variables, common randomness.

Different networks require very different techniques.
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Summary

Non-adversarial:

Y1

Y2 Y3 Yk−2 Yk−1

X1 X2 X3
Xk−1

Y

X Y1

Y2

Y3
Y4

Yk−2

Yk−1

Adversarial:

Two Nodes:

Achieve Correlated Y ∼ p(y|x)

Secret key required

Tradeoff between
communication and secret key

Fundamental Limits:

Communication: R1 > I(X;Y ).

Secret key: R2 > C(X;Y ).

Game Theory Perspective for
Encryption
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