Distribution Approximation
Techniques for Security,
Differential Privacy, and Learning
Paul Cuff (Princeton University)

Information

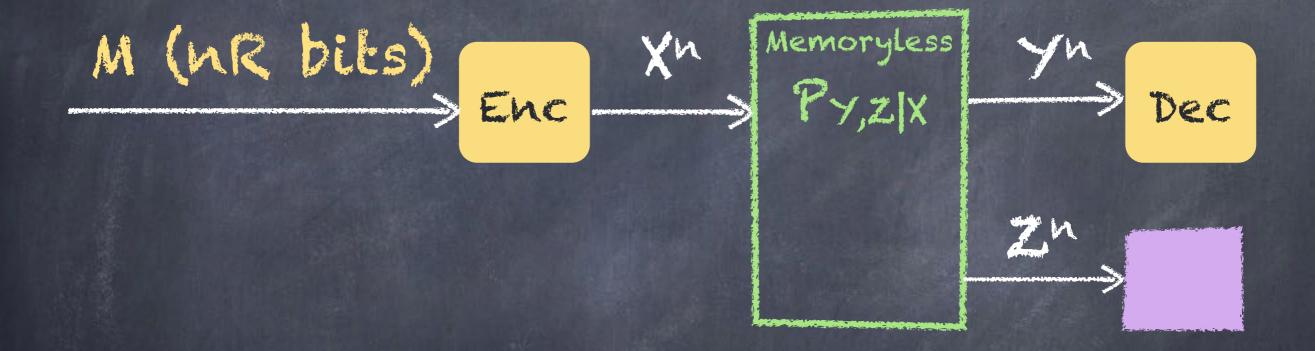
New results on secure communication

Wirelap Example

- Transmit n bits
- Eavesdropper sees all but one bit

0110100 1011

Wirelap Chainel



Secrecy Capacity:

- Reliable communication
- Z' contains no information about M

Solutions

and gave solution for degraded channels

o 1978: Csiszár and Körner gave solution for all channels

Solution

Degraded:

$$C_s = max_{Px} I(X;Y) - I(X;Z)$$

General:

$$C_s = \max_{P \times U} I(U; Y) - I(U; Z)$$

$$P \times V \rightarrow P \times V \rightarrow P \times V \rightarrow Z \rightarrow Z$$

Encoding

- @ Random Codebook
- o Pad with random garbage bits

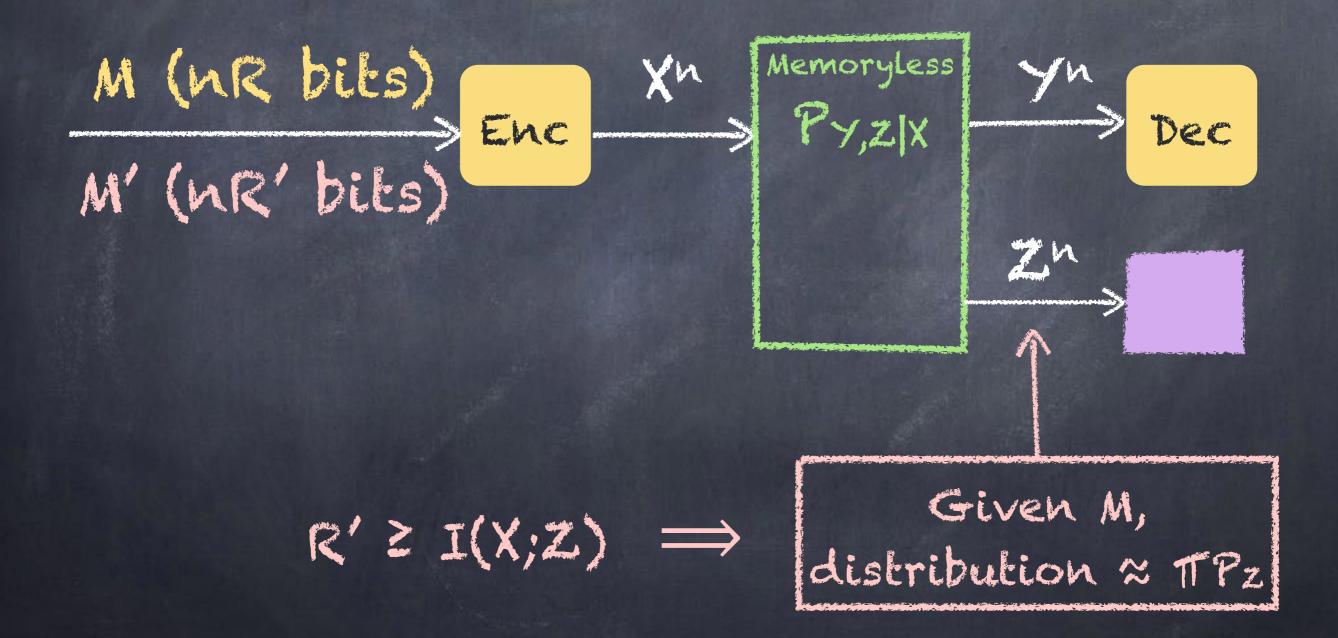
Message

Padding

01001011010111100100 011001010

Transmitted together in one block

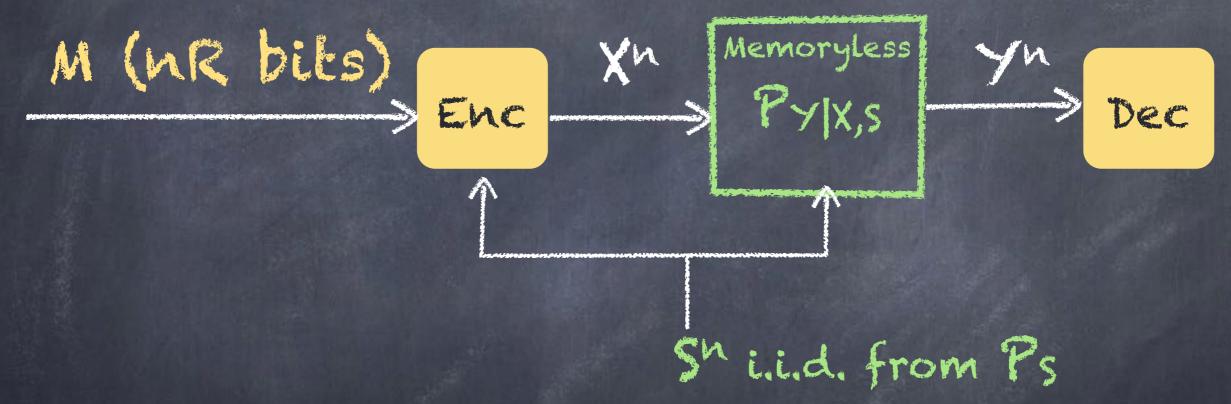
Encoding Concept



Channel Capacity with Random State

PUZZLE

Gelfand-Pinsker (state known to encoder)

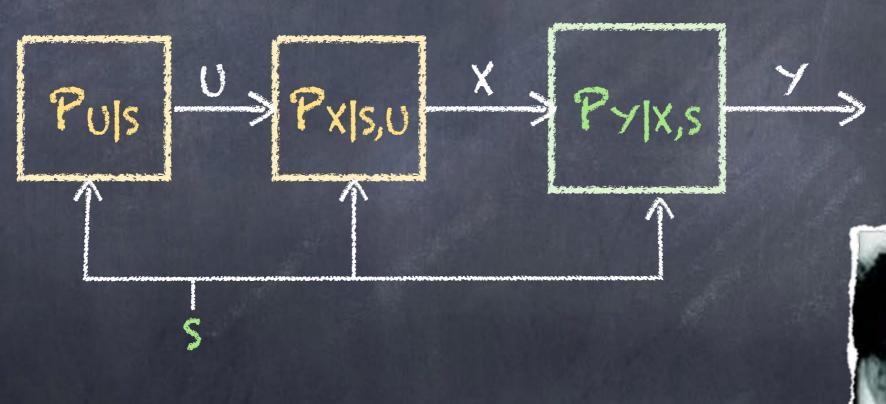


Capacity:

- Reliable communication

Solution (1980) Celfand-Pinsker

$$C = \max_{P_{X,U|S}} I(U;Y) - I(U;S)$$



Encoding

- @ Random Codebook
- o Pad with skillfully chosen bits

Message

Padding

01001011010111100100 011001010

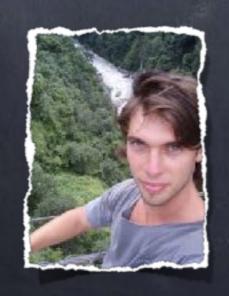
Transmitted together in one block

Similatiles

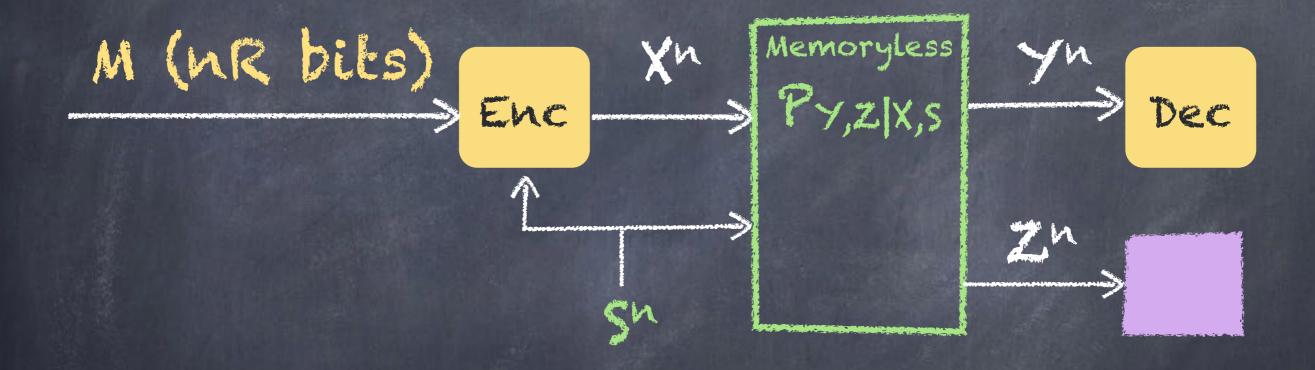
- o Virtually the same
 - o same encoding
 - Same converse (except, iid 5ⁿ allows a skipped step)
 - o Same problem statement:
 - o Wiretap: Mindependent of Zn
 - o Gelfand-Pinsker: Mindependent of sh

Wiretap Channels with Random States

Ziv Golfeld and Haim Permuter



Wirelap Channel with State



- Secrecy Capacity:
 Reliable communication
 - Z' contains no information about M

same Encoding

$$C_s \ge \max_{P_{X,U|S}} I(U;Y) - \max \left\{ egin{aligned} I(U;Z), \\ I(U;S) \end{aligned} \right\}$$

Message

Padding

01001011010111100100 011001010

Transmitted together in one block

Extract Key

Assume 5 is known to the intended receiver as well:

$$C_s \ge \max_{P_{X,U|S}} \min \left\{ egin{array}{l} I(U;Y|S), \\ H(S|Z,U) \end{array} \right\}$$

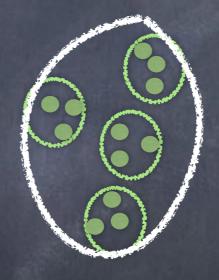
Chia and El Gamal, 2012

Note: They consider causal state information.
This region is adapted to take advantage of non-causal state information.

Our Scheme

Superposition code

Codebook



Two auxiliary variables
U for the clusters
V for the codewords in each cluster

Un index is padding only Vn index is message and padding

All secrecy comes from V Un is decoded by the eavesdropper

Our Scheme

$$C_s \ge \max_{P_{X,U,V|S}: I(U;Y) \ge I(U;S)} \min \left\{ I(U,V;Y) - I(U,V;S), \\ I(V;Y|U) - I(V;Z|U) \right\}$$

Can mimic Chia and El Gamal's key extraction by setting V=5

Beats previous regions

Other Related Work

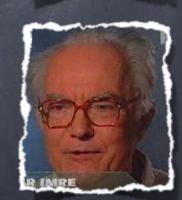
- o Prabhakaran, Eswaran, and Ramchandran, 2012:
 - \bullet Same superposition code but require U-V-(S,X) and U \perp S.
- o Bassi, Bunin, Piantanida, and Shamai, 2016 (several papers):
 - o Key generation and secure communication
 - o Sources independent of channel
 - o Generalized feedback

Simple Special case

- o Unlimited public noise-free channel
- "Key Capacity with one-way communication"

$$C_s = \max_{P_{U,V|S_x}} I(V; S_y|U) - I(V; S_z|U)$$

Achieved by our scheme

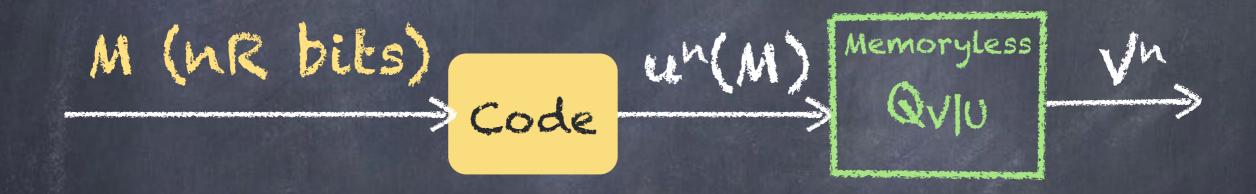


Distribution Approximation Tool Soft Covering



soft covering

o Theorem 6.3 of Wyner's C.I. paper:



Randomly select a codeword

Pass through a memoryless channel

Does induced output distribution match desired?

Output Distribution

Desired output distribution:

$$Q_V(v) = \sum_{u} Q_{V|U}(v|u)Q_U(u)$$

Induced output distribution:

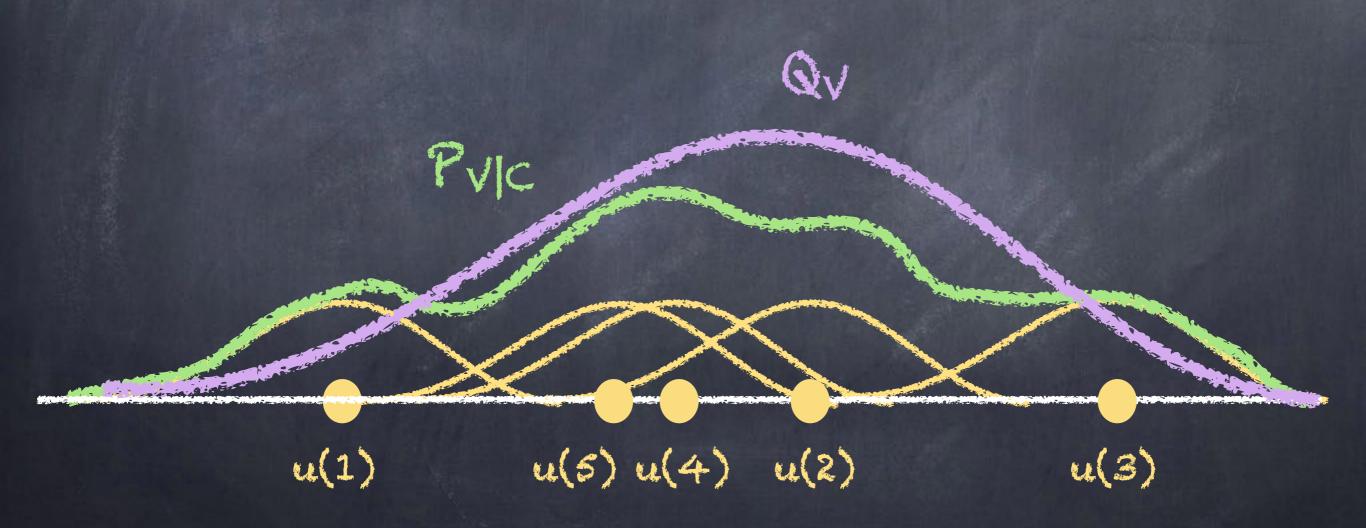
$$P_{V^n|\mathcal{C}} = 2^{-nR} \sum_{u^n(m) \in \mathcal{C}} Q_{V^n|U^n = u^n(m)}$$

$$Q_{V^n} = \prod Q_V$$

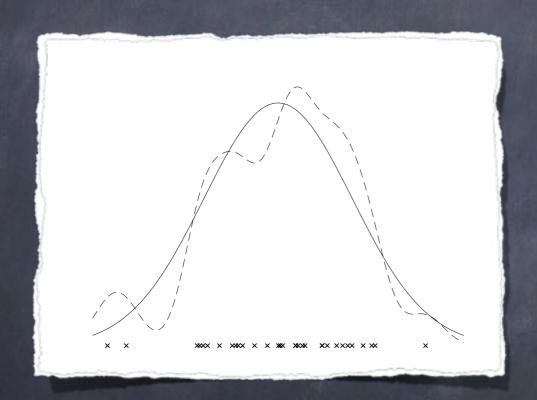
$$Q_{U^n} = \prod Q_U$$

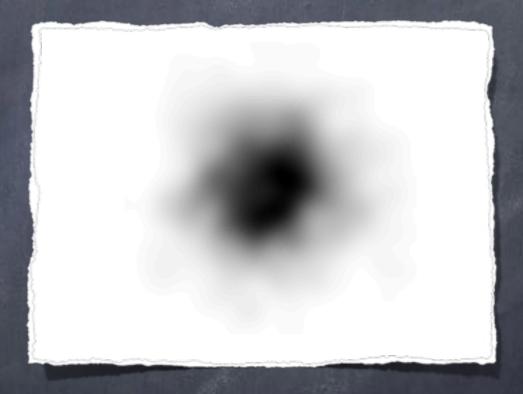
$$Q_{V^n|U^n} = \prod Q_{V|U}$$

Output Distribution

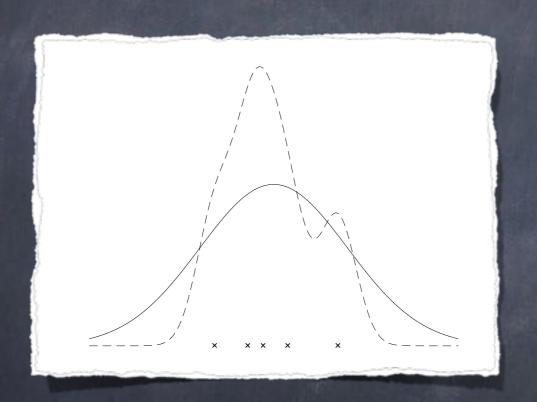


Craussian Example





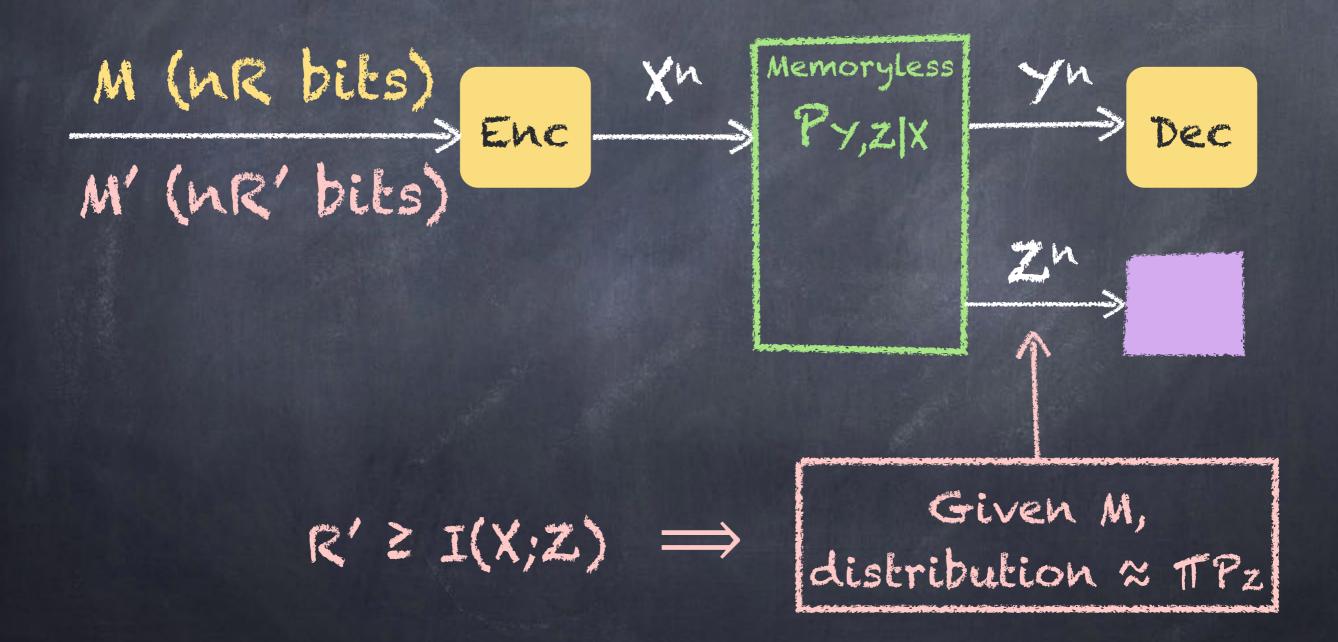
Craussian Example



soft covering Lemma

- @ Codebook size: R>I(U;V)
- o Codebook generation: Un(m)-Qu i.i.d.
- o Success: $P_{V^n|\mathcal{C}} pprox Q_{V^n}$

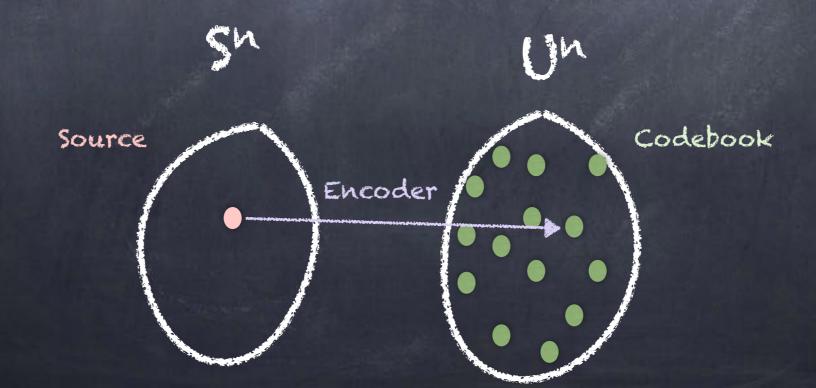
Wirelap Application



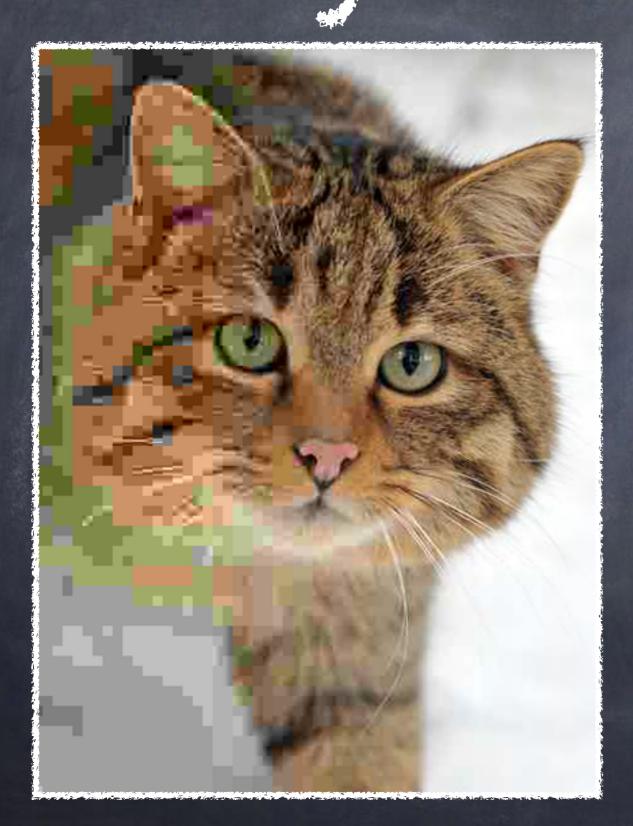
Distribution Approximation Trick "likelihood Encoder" + Soft Covering

Source Coding

- o Source (random process) with known distribution Ps (i.i.d.)
- o Desired correlation Puls
- o Codebook of U" sequences
- \circ Encoder selects codeword to empirically match the desired distribution $P_{U,S}$

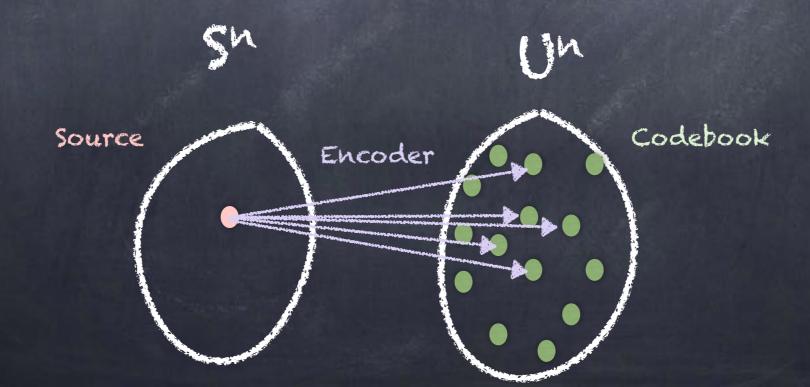


Lossy Compression



Likelihood

- o Source (random process) with known distribution Ps (i.i.d.)
- o Desired correlation Puls
- o Codebook of U" sequences
- \circ Encoder stochastically selects codeword proportional to likelihood under $P_{S|U}$



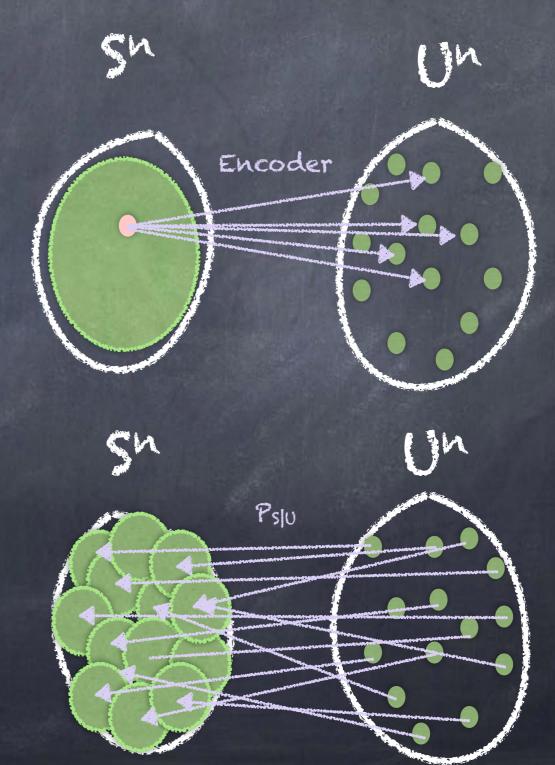
Approximate Distribution

Distribution 1 (induced by encoding):

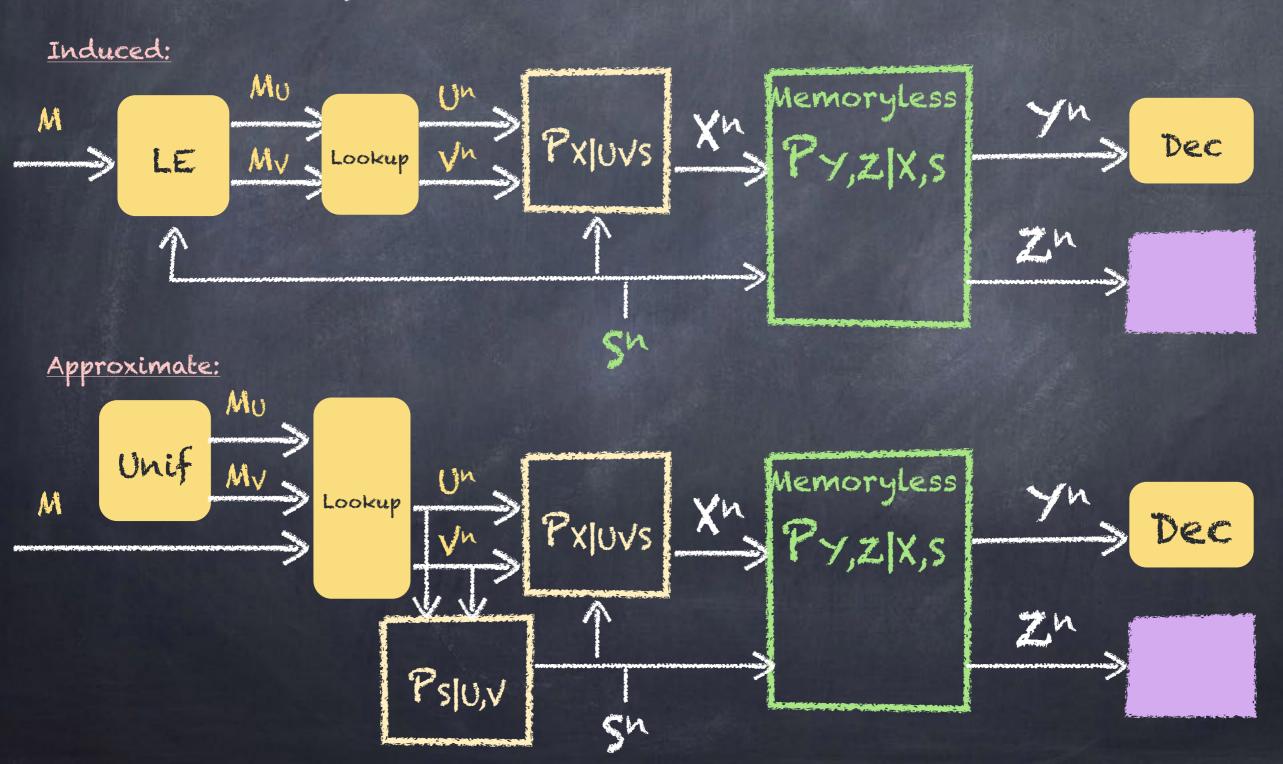
- Sh is i.i.d. ~ Ps
- Likelihood encoder produces Un

Distribution 2:

- Choose Un codeword uniformly at random
- Generate Sn memorylessly from Un ~ Pslu



Miretap with Candom States



Differential Privacy as a Mutual Information Constraint Paul Cuff and Langing Yu

Database Privacy

- e Let X1, X2, ..., Xn be entries in a database
 - e E.g. Xi is personal information about person i
- e Let Y be the response to a query
- The job of the information provider is to answer queries and protect individual privacy

 Design P(y|x)

Differential Privacy

- Ø ε−DP:
 - e Let x and x' differ in only one entry (i.e. $x_i=x_i'$ for all but one i)
 - p(y|x) ≤ e[®] p(y|x')
- e Why x and x' differ in only one spot?
 - o Convince someone to put their data in your database
- · Why multiplicative constraint?
 - o Posterior update is small

A COMMON

o Add Laplacean noise

Weaker DP

- o (ε,δ) -DP:
 - e Let x and x' differ in only one entry
 - © P(Y∈A|x) ≤ e^ε P(Y∈A|x') + δ
- Additive Gaussian noise often
 provides privacy

Multual Information Differential Privacy

E-MI-DP:

 $\max_{i,P_{X^n}} I(X_i;Y|X^{i-1},X_{i+1}^n) < \epsilon$

Claim

$$\varepsilon$$
-DP > MI-DP > (ε,δ) -DP

Furthermore, if input or output alphabet is finite,

$$MI-DP = (\epsilon, \delta)-DP$$

Privacy Ordering

 α -DP > β-DP if for all β>0 there exists α such that α -DP ⇒ β-DP.

Subaddilivity of DP

- o Multiple queries:
 - o If k queries Yq1, Yq2, ..., Yqk each have differential privacy s and are conditionally independent, the combined they have ks privacy.

Simple MI-DP Proof:

$$I(X; Y_1, Y_2) = I(X; Y_1) + I(X; Y_2 | Y_1)$$

 $\leq I(X; Y_1) + I(X; Y_2)$

For clarity, conditioned database variables are omitted.

Common complaint

- Differentially privacy doesn't not mean that you can't learn about Xi.
 - Consider a database with correlated entries.

Simple MI-DP Explanation:

$$I(X_i;Y) \leq I(X_i;Y|X^{i-1},X_{i+1}^n)$$

Precise Bounds

(e,8) CLOSENESS

$$P \stackrel{(\epsilon,\delta)}{pprox} Q$$

$$P(A) \le e^{\epsilon} Q(A) + \delta, \quad \forall A \in \mathcal{F},$$

 $Q(A) \le e^{\epsilon} P(A) + \delta, \quad \forall A \in \mathcal{F}.$

Special Cases

$$P \stackrel{(\epsilon,0)}{\approx} Q \iff \left| \ln \frac{dP}{dQ}(a) \right| \le \epsilon \quad \forall a \in \Omega.$$

$$P \stackrel{(0,\delta)}{\approx} Q \iff \|P - Q\|_{TV} \le \delta.$$

Simple Claim

$$P \stackrel{(\epsilon,0)}{\approx} Q \implies \frac{D(P||Q) \le \epsilon \text{ nats,}}{D(Q||P) \le \epsilon \text{ nats.}}$$

Tight Bound

$$P \overset{(\epsilon,0)}{\approx} Q \implies D(P\|Q) \le \epsilon \frac{(e^{\epsilon} - 1)(1 - e^{-\epsilon})}{(e^{\epsilon} - 1) + (1 - e^{-\epsilon})} \text{ nats,}$$

$$D(Q\|P) \le \epsilon \frac{(e^{\epsilon} - 1)(1 - e^{-\epsilon})}{(e^{\epsilon} - 1) + (1 - e^{-\epsilon})} \text{ nats.}$$

Relative entropy to Mutual Information

If

$$D\left(P_{Y|X=x_1} \| P_{Y|X=x_2}\right) \le \epsilon \quad \forall x_1, x_2 \in \mathcal{X}$$

then

$$I(X;Y) \le \epsilon$$

Hint: Radius of information ball

Multual Information to Total Variation

$$\max_{P_X} I(X;Y) \le \epsilon \implies \frac{\|P_{Y|X=x_1} - P_{Y|X=x_2}\|_{TV}}{\forall x_1, x_2 \in \mathcal{X}} \le \delta'$$

$$\delta' = 1 - 2h^{-1}(\ln 2 - \epsilon)$$

$$\leq \sqrt{2\epsilon}$$

Tightest bound, achieved with binary channel

Finite Alphabet

$$\begin{aligned} \|P_{Y|X=x_1} - P_{Y|X=x_2}\|_{TV} &\leq \delta \\ \forall x_1, x_2 \in \mathcal{X} \end{aligned} \Longrightarrow I(X;Y) \leq \epsilon'$$

$$\epsilon' = 2h(\delta) + 2\delta \ln \left(\min \left\{ |\mathcal{Y}|, \max_{i} |\mathcal{X}_{i}| + 1 \right\} \right)$$

harder step

Continuity of entropy

Continuity of conditional entropy

inspired by Alicki and Fannes, 2004

Estimation of Smoothed Entropy

Paul Cuff, Peter Park, Yucel Altug, Langing Yu (Princeton University)

Estimation of Smoothed Support

Paul Cuff, Peter Park, Yucel Altug, Langing Yu (Princeton University)

Problem

- Take n samples from an unknown distribution (i.id.)
- e Estimate the entropy
- e Estimate the support

Many Incarnations

o Shakespeare's vocabulary

o How many species?

o Good-Turing estimator

Long History

- o Recent:
 - o [Valiant-Valiant 10]
 - o [Acharya-Jafarpour-Orlitsky-Suresh-Wu 13, 15]
 - o [Jiao-Venkat-Han-Weissman 15]

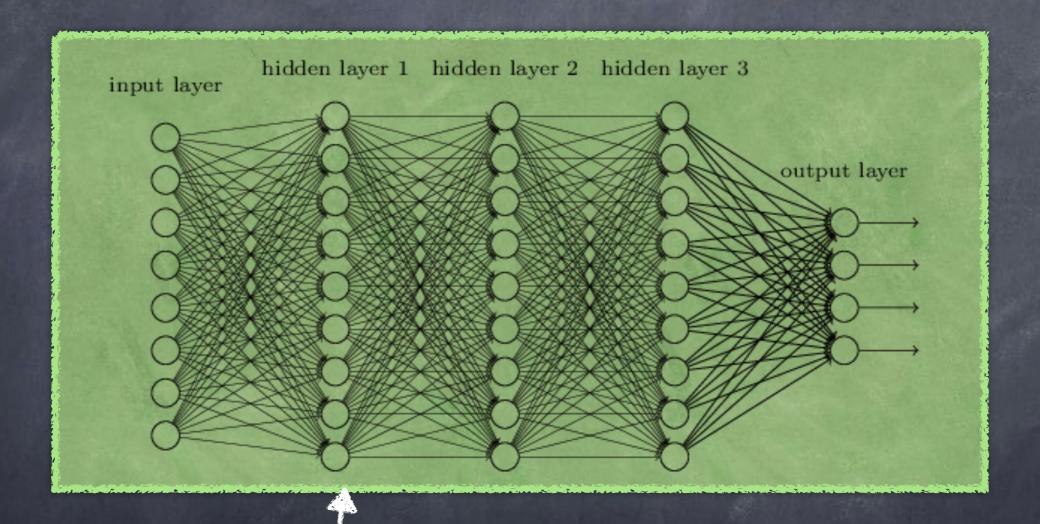
The problem

PX May never see the tail

The USUAL OSSUMPLION

- o Recent work
 - e Entropy: assume a bound on the support size (S)
 - Support: assume a minimum
 probability mass (1/5)
 - $oldsymbol{\circ}$ Sample complexity: $n \sim rac{S}{\log S}$

Death by S



5 = 22000

What can we do with no assumption?

rerhaps haching

- Cannot reliably decide that entropy or support is finite.
- Reason: Every distribution has an H=00 neighbor (in total variation)

YILLES

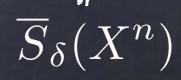
After one million samples of seeing only one outcome, can we not say anything?

TWO CHANGES

1. Estimate smoothed entropy/support

$$S_{\delta}(P_X) = \min_{Q: \|P_X - Q\|_{TV} \le \delta} |\text{Support}(Q)|$$

2. Confidence bounds: Estimator can fail as long as it knows when it fails



All Samples the

- @ Conclude: H=0, Support=1
- Error prob. $< \epsilon$ if $n \ge \frac{\log \frac{2}{\epsilon}}{\log \frac{1}{1-\delta}}$
- 459 samples (for $\delta = \epsilon = 0.01$)

All samples bifferent

- o No upper bound possible
- e Lower bound: Support = 52(n2)

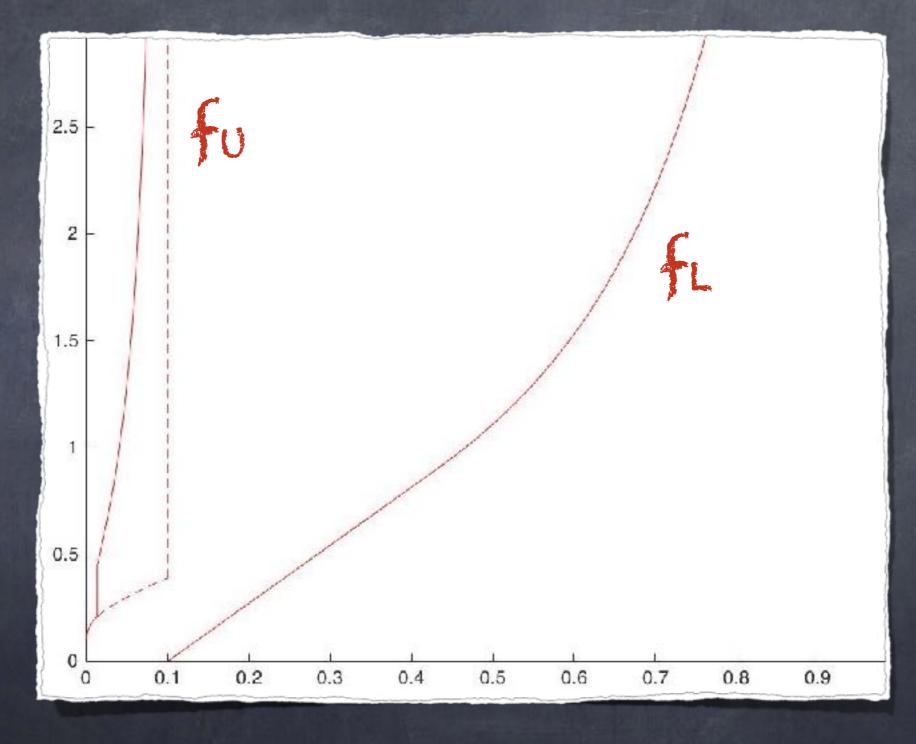
EMACHIEVING

$$\sup_{P} \mathbb{P}\left(S_{\delta}(P) \notin \left[\underline{S}_{\delta}(X^{n}), \overline{S}_{\delta}(X^{n})\right]\right) \leq \epsilon$$

Simple estimator

- Build estimator based on a simple statistic:
 - o R = fraction of unique samples

 $\delta = 0.1$



 \overline{n}

Claim

- o Choose C>3:
- © ε-achieving (for large enough n):

$$\underline{S}_{\delta}(R) = nf_L\left(R + c\sqrt{\frac{\log n}{n}}\right)$$
 $\overline{S}_{\delta}(R) = nf_U\left(R - c\sqrt{\frac{\log n}{n}}\right)$

$$f_L(r) = \begin{cases} 0 & r \le \delta \\ e(r - \delta) & \delta < r < \delta + e^{-1}(1 - \delta) \\ \frac{1 - \delta}{\log \frac{1 - \delta}{r - \delta}} & r \ge \delta + e^{-1}(1 - \delta) \end{cases} \qquad f_U(r) = \begin{cases} \frac{1 - \delta}{\log \frac{\delta}{r}} & r < \delta \\ \infty & r \ge \delta \end{cases}$$

Summary

- e Estimator works with no assumptions about the distribution
- « Key step was to allow a total variation approximation

Proof 2 Secus

- 1. Connect to Poisson Approximation
- 2. Analyze Poisson Approximation

Poisson approximation

Non-discrete part

Discrete

Bernstein

$$\mathbb{P}\left(|R - \mathbb{E}_{X^N} R| > 3\Delta\right) < e\sqrt{n}\left(\exp\left(-\frac{n\Delta^2}{2(1+\Delta)}\right) + \exp\left(-\frac{n\Delta^2}{2}\right) + \exp\left(-\frac{n\Delta^2}{2(1+\Delta/3)}\right) + \frac{1}{n}\right)$$

Plug in
$$\Delta = \frac{c}{3} \sqrt{\frac{\log n}{n}}$$

Define fingerprint: $X \sim P_X$ $Y = P_X(X) = e^{-\imath_X(X)}$

$$S_{\delta}(P_X) = \mathbb{E} \frac{1}{Y} 1\{Y > \mathbb{F}_Y(\delta)\}$$
$$\mathbb{E}_{X^N} R = \mathbb{E} e^{-nY}$$