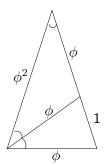
The Golden Ratio in Communication

Blackwell's Trapdoor Channel
Task Assignment

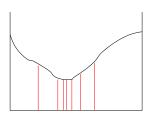
Paul Cuff (Cover, Permuter, Weissman, Van Roy)

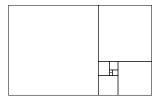


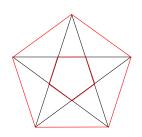
Stanford University

November 24, 2008

Golden Ratio

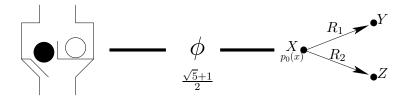




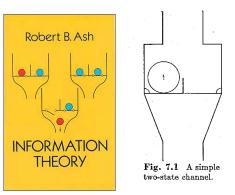


1,1,2,3,5,8,13,...

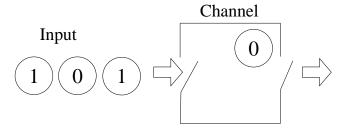
Outline - Markov Chain



Introduced by David Blackwell in 1961. [Ash 65], [Ahlswede & Kaspi 87], [Ahlswede 98], [Kobayashi 02 & 03].



A "simple two-state channel." - Blackwell

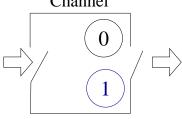


$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

Input

Channel



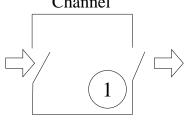
$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

$$x_1 = 1$$
,

Input

Channel



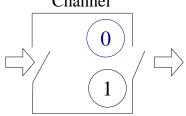
$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

 $x_1 = 1$, $s_1 = 1$, $y_1 = 0$,

Input

Channel

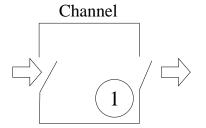


$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

 $x_1 = 1$, $s_1 = 1$, $y_1 = 0$,
 $x_2 = 0$,

Input

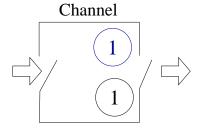


$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

 $x_1 = 1$, $s_1 = 1$, $y_1 = 0$,
 $x_2 = 0$, $s_2 = 1$, $y_2 = 0$,

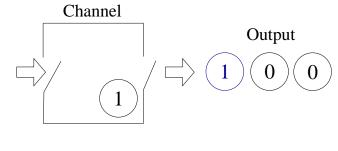
Input



$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

 $x_1 = 1$, $s_1 = 1$, $y_1 = 0$,
 $x_2 = 0$, $s_2 = 1$, $y_2 = 0$,
 $x_3 = 1$,



$$s_t = s_{t-1} + x_t - y_t$$

$$s_0 = 0$$

 $x_1 = 1$, $s_1 = 1$, $y_1 = 0$,
 $x_2 = 0$, $s_2 = 1$, $y_2 = 0$,
 $x_3 = 1$, $x_3 = 1$, $y_3 = 1$.

Communication without Feedback

• Repeat each bit three time: R = 1/3 bit.

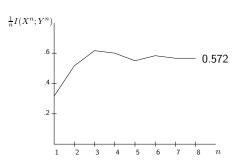
Communication without Feedback

- Repeat each bit three time: R = 1/3 bit.
- Repeat each bit twice: R = 1/2 bit. [Ahlswede & Kaspi 87]

Communication without Feedback

- Repeat each bit three time: R = 1/3 bit.
- Repeat each bit twice: R = 1/2 bit. [Ahlswede & Kaspi 87]
- ullet Cpprox 0.572 bits per channel use. [Kobayashi & Morita 03]

$$C = \lim_{n \to \infty} \max_{p(x_1, \dots, x_n)} \frac{1}{n} I(X^n; Y^n).$$



Communication Setting (with feedback)

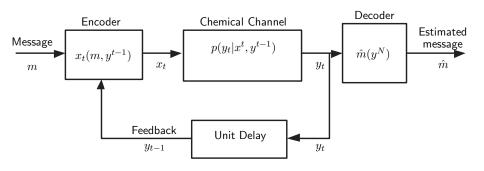


Figure: Communication with feedback

Feedback Capacity of Unifilar, Strongly Connected, FSC

Capacity of the Trapdoor Channel

$$C = \lim_{n \to \infty} \frac{1}{n} \max_{p(x_1, \dots, x_n)} I(X^n; Y^n)$$

Feedback capacity of the Trapdoor Channel

$$C_{FB} = \lim_{n \to \infty} \frac{1}{n} \max_{\{p(x_i | x^{i-1}, y^{i-1})\}_{i=1}^n} I(X^n \to Y^n)$$

[Permuter, Weissman & Goldmith ISIT06]

Directed Information

Mutual Information

$$I(X^n; Y^n) = \sum_{i=1}^n I(X^n; Y_i | Y^{i-1})$$

Directed Information was defined by Massey in 1990.

$$I(X^n \to Y^n) \triangleq \sum_{i=1}^n I(X^i; Y_i | Y^{i-1})$$

Directed Information

Mutual Information

$$I(X^n; Y^n) = \sum_{i=1}^n I(X^n; Y_i | Y^{i-1})$$

Directed Information was defined by Massey in 1990.

$$I(X^n \to Y^n) \triangleq \sum_{i=1}^n I(X^i; Y_i | Y^{i-1})$$

Intuition [Massey 05]:

$$I(X^n; Y^n) = I(X^n \to Y^n) + I(Y^{n-1} \to X^n)$$

Feedback Capacity of Unifilar, Strongly Connected, FSC

$$C_{FB} = \lim_{N \to \infty} \frac{1}{N} \max_{\{p(x_t|x^{t-1},y^{t-1})\}_{t=1}^N} I(X^N \to Y^N)$$

$$= \lim_{N \to \infty} \frac{1}{N} \max_{\{p(x_t|x^{t-1},y^{t-1})\}_{t=1}^N} \sum_{t=1}^N I(X^t; Y_t|Y^{t-1})$$

$$= \lim_{N \to \infty} \frac{1}{N} \max_{\{p(x_t|s_{t-1},y^{t-1})\}_{t=1}^N} \sum_{t=1}^N I(X_t, S_{t-1}; Y_t|Y^{t-1})$$

$$= \sup_{\{p(x_t|s_{t-1},y^{t-1})\}_{t\geq 1}} \liminf_{N \to \infty} \frac{1}{N} \sum_{t=1}^N I(X_t, S_{t-1}; Y_t|Y^{t-1})$$

Dynamic Programming (infinite horizon, average reward)

Variable Assignments

State:
$$\beta_t = p(s_t|y^t)$$

Action:
$$u_t = p(x_t|s_{t-1})$$

Disturbance:
$$w_t = y_{t-1}$$

Dynamic Programming Requirements

State evolution:

$$\beta_t = F(\beta_{t-1}, u_t, w_t)$$

Reward function per unit time:

$$g(\beta_{t-1}, u_t) = I(X_t, S_{t-1}; Y_t | \beta_{t-1})$$

Similar dynamic programming approaches:

- Yang, Kavčić & Tatikonda 2005
- Chen & Berger 2005
- Mitter & Tatikonda 2006

Dynamic Programming (infinite horizon, average reward)

Dynamic Programming Operator T

The dynamic programming operator T is given by

$$T \circ J(\beta) = \sup_{u \in \mathcal{U}} \left(g(\beta, u) + \int P_w(dw|\beta, u) J(F(\beta, u, w)) \right).$$

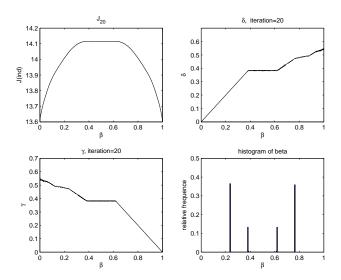
Bellman Equation

If there exist a function $J(\beta)$ and constant ρ that satisfy

$$J(\beta) = T \circ J(\beta) - \rho$$

then ρ is the optimal infinite horizon average reward.

Trapdoor Channel—20th Value iteration

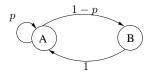


Trapdoor channel: $C_{FB} \approx 0.694$ bits

Trapdoor channel: $C_{FB} \approx 0.694$ bits

Homework Question

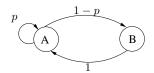
Entropy rate. Find the maximum entropy rate of the following two-state Markov chain:



Trapdoor channel: $C_{FB} \approx 0.694$ bits

Homework Question

Entropy rate. Find the maximum entropy rate of the following two-state Markov chain:



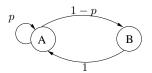
Solution: (Golden Ratio:
$$\phi=\frac{\sqrt{5}+1}{2}$$
)
$$p^\star=\phi-1=\frac{1}{\phi}$$

$$H(\mathcal{X})=\log\phi=0.6942... \text{ bits}$$

Trapdoor channel: $C_{FB} \approx 0.694$ bits

Homework Question

Entropy rate. Find the maximum entropy rate of the following two-state Markov chain:



Solution: (Golden Ratio:
$$\phi=\frac{\sqrt{5}+1}{2}$$
)
$$p^\star=\phi-1=\frac{1}{\phi}$$

$$H(\mathcal{X})=\log\phi=0.6942... \text{ bits}$$

Case 1:
$$\tilde{x}_t = 0$$

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{y}_t = \tilde{x}_{t-1}.$$

Case 1:
$$\tilde{x}_t = 0$$

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{y}_t = \tilde{x}_{t-1}.$$

Proof:
$$x_t = s_{t-1} = y_t = s_t$$

Case 1:
$$\tilde{x}_t = 0$$

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{y}_t = \tilde{x}_{t-1}.$$

Proof:
$$x_t = s_{t-1} = y_t = s_t$$

$$x_{t-1} \oplus s_{t-2} = y_{t-1} \oplus s_{t-1}$$

Case 1:
$$\tilde{x}_t = 0$$

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{y}_t = \tilde{x}_{t-1}.$$

Proof:
$$x_t = s_{t-1} = y_t = s_t$$

$$x_{t-1} \oplus s_{t-2} = y_{t-1} \oplus s_{t-1}$$

$$x_{t-1} \oplus s_{t-2} = y_{t-1} \oplus y_t$$

Case 1:
$$\tilde{x}_t = 0$$

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{y}_t = \tilde{x}_{t-1}.$$

Proof:
$$x_t = s_{t-1} = y_t = s_t$$

$$x_{t-1} \oplus s_{t-2} = y_{t-1} \oplus s_{t-1}$$

$$x_{t-1} \oplus s_{t-2} = y_{t-1} \oplus y_t$$

$$x_{t-1} \oplus s_{t-2} = y_{t-1} \oplus y_t$$

Case 2:
$$\tilde{x}_t = 1$$

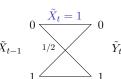
$$\tilde{x}_t = 1 \quad \Rightarrow \quad \tilde{y}_t \sim \text{Bern}(1/2)$$
, independent of the past.

Equivalent Channel

• Two states specify whether the channel is all noise or noise-free.

$$0 \frac{\tilde{X}_{t} = 0}{\tilde{X}_{t-1}} \quad 0$$

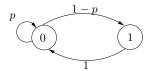
$$1 \frac{\tilde{Y}_{t-1}}{\tilde{Y}_{t-1}} \quad 1$$



Equivalent Channel

• Two states specify whether the channel is all noise or noise-free.

Use Markov input



Decoding Example

- Transmitter promises to never use $\tilde{x} = 1$ twice in a row.
- ullet The number of such sequences of length n is the Fibonacci sequence.

Decoding rules

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$
 $\tilde{x}_t = 1 \quad \Rightarrow \quad \tilde{x}_{t-1} = 0$

```
\tilde{x}^n: 0 \tilde{y}^n: 1 1 1 1 0 0 1
```

Decoding Example

- Transmitter promises to never use $\tilde{x} = 1$ twice in a row.
- ullet The number of such sequences of length n is the Fibonacci sequence.

Decoding rules

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$

 $\tilde{x}_t = 1 \quad \Rightarrow \quad \tilde{x}_{t-1} = 0$

```
\tilde{x}^n: 0 0 \tilde{y}^n: 1 1 1 1 0 0 1
```

Decoding Example

- Transmitter promises to never use $\tilde{x} = 1$ twice in a row.
- ullet The number of such sequences of length n is the Fibonacci sequence.

Decoding rules

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$
 $\tilde{x}_t = 1 \quad \Rightarrow \quad \tilde{x}_{t-1} = 0$

```
\tilde{x}^n: 1 0 0 \tilde{y}^n: 1 1 1 1 0 0 1
```

Decoding Example

- Transmitter promises to never use $\tilde{x} = 1$ twice in a row.
- ullet The number of such sequences of length n is the Fibonacci sequence.

Decoding rules

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$
 $\tilde{x}_t = 1 \quad \Rightarrow \quad \tilde{x}_{t-1} = 0$

```
\tilde{x}^n: 0 1 0 0 \tilde{y}^n: 1 1 1 1 0 0 1
```

Decoding Example

- Transmitter promises to never use $\tilde{x} = 1$ twice in a row.
- ullet The number of such sequences of length n is the Fibonacci sequence.

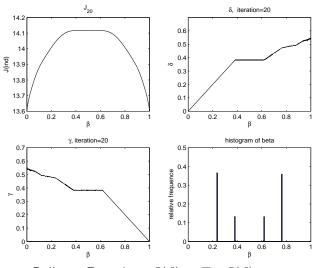
Decoding rules

$$\tilde{x}_t = 0 \quad \Rightarrow \quad \tilde{x}_{t-1} = \tilde{y}_t$$

 $\tilde{x}_t = 1 \quad \Rightarrow \quad \tilde{x}_{t-1} = 0$

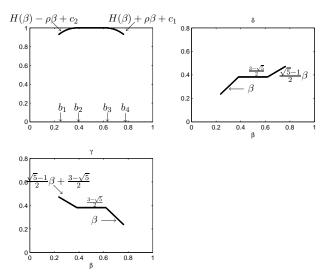
```
\tilde{x}^n: 1 0 1 0 0 \tilde{y}^n: 1 1 1 1 0 0 1
```

Dynamic Programming 20th Value iteration



Bellman Equation: $J(\beta) = T \circ J(\beta) - \rho$.

Conjectured Solution to the Bellman Equation



Bellman Equation: $J(\beta) = T \circ J(\beta) - \rho$.

Feedback Capacity and Zero-Error Capacity

Bellman Equation is satisfied.

Trapdoor channel feedback capacity:

$$C_{FB} = \log \phi = 0.6942...$$
 bits. $C \approx .572$ bits.

Feedback Capacity and Zero-Error Capacity

Bellman Equation is satisfied.

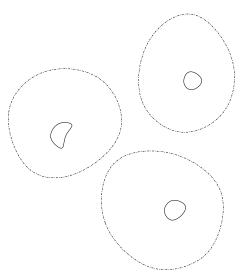
Trapdoor channel feedback capacity:

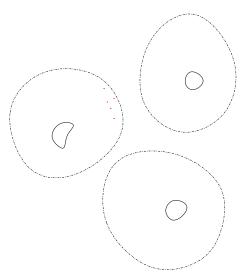
$$C_{FB} = \log \phi = 0.6942...$$
 bits. $C \approx .572$ bits.

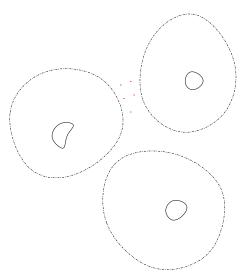
Trapdoor channel zero-error capacity:

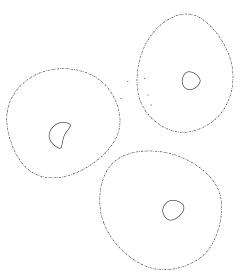
$$C_{FB} = \log \phi.$$
 $C = .5 \text{ bits.}$

[Ahlswede & Kaspi 87]

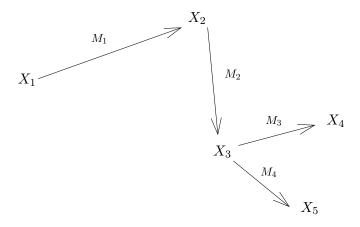








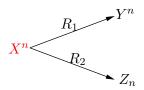
Coordinated Action in a Network



Task Assignment

Computation Tasks: $T = \{0, 1, 2\}$ Processors: X, Y, and Z

 $X^n \sim iid, \ Unif(\{0,1,2\})$

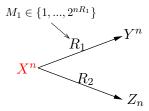


What are the required rates (R_1, R_2) ?

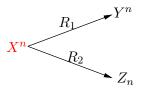
Task Assignment

Computation Tasks: $T = \{0, 1, 2\}$ Processors: X, Y, and Z

$$X^n \sim iid, \ Unif(\{0,1,2\})$$



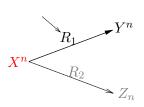
What are the required rates (R_1, R_2) ?



Idea 1—Describe X^n :

$$R_1 = R_2 = H(X) = \log(3).$$

A protocol tells Y and Z how to orient around X.



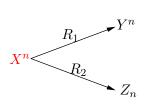
Idea 2—Minimize R_1 :

$$R_1 \geq \min_{p(y|x):X\neq Y} I(X;Y)$$

$$= H(X) - \max_{p(y|x):X\neq Y} H(Y|X)$$

$$= \log 3 - \log 2.$$

Describe Z^n at full rate: $R_2 = \log 3$.



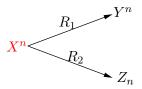
Idea 3—Restrict the support of Y and Z:

$$\begin{array}{ccc} Y & \in & \{0,1\} \\ Z & \in & \{0,2\}. \end{array}$$

By default Y = 1 and Z = 2.

The encoder tells them when to move out of the way.

$$R_1 \ge H(Y) = H(1/3) = \log 3 - 2/3$$
 bits,
 $R_2 \ge H(Z) = H(1/3) = \log 3 - 2/3$ bits.



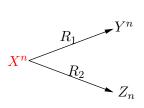
Achievable rates for general joint distribution p(x, y, z):

$$R_1 \geq I(X; Y, U),$$

 $R_2 \geq I(X; Z, U),$
 $R_1 + R_2 \geq I(X; Y, U) + I(X; Z, U) + I(Y; Z|X, U).$

for some U.

[Cover, Permuter 07], [Zhang, Berger 95]



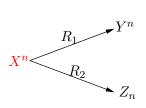
Idea 4—Restrict the support of Y and Z around \hat{X} :

First send \hat{X} to both Y and Z, where $\hat{X}=X$ with probability $\frac{\alpha}{\alpha+2}$.

$$p(\hat{x}|x=1)$$

$$\begin{bmatrix} \frac{1}{\alpha+2} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{\alpha}{\alpha+2} \\ \frac{1}{\alpha+2} \\ 2 \end{bmatrix}$$



Idea 4—Restrict the support of Y and Z around \hat{X} :

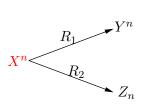
$$Y \in {\hat{X}, \hat{X} + 1}$$

 $Z \in {\hat{X}, \hat{X} + 2}.$

The encoder tells them when to move out of the way (onto \hat{X}).

$$R_1 \geq I(X; \hat{X}) + H(Y|\hat{X}),$$

 $R_2 \geq I(X; \hat{X}) + H(Z|\hat{X}).$



Idea 4—Restrict the support of Y and Z around \hat{X} :

Optimize α (compression rate of \hat{X}):

$$\alpha^* = \phi = \frac{\sqrt{5} + 1}{2}.$$

Resulting rates:

$$R_1 = R_2 = \log 3 - \log \phi.$$

Summary

- Blackwell's Trapdoor Channel
 - $ightharpoonup C_{FB} = \log \phi.$
 - ► Transform to equivalent channel
 - ▶ Simple zero-error communication scheme
 - Guess and check solution to Bellman equation
- Three-node task assignment
 - Achievable symmetric rate: $H(X) \log \phi$
 - Two phases of communication

