Rate-Distortion Theory for Secrecy Systems

SPCOM 2014
Communication

Move a signal from one place to another
Communication

Move a signal from one place to another
Secrecy Systems

- Old Ciphers:
 - Obscure (design kept secret)
 - Complicated

- New Ciphers
 - Computationally challenging
 - Complicated
Rotors
Lampboard
Keyboard
Plugboard
AES

- Complicated
- Not known how to undo
Modern Cryptography

- Began in 1970’s (from IT community)
- Built on fundamental mathematical problems that are believed difficult to compute
- Diffie-Hellman
- RSA
Information
Theoretic Security

- Shannon's '49 paper
- Fewer assumptions (omnipotent adversary)
- More resources required for mathematical guarantees
Perfect Secrecy

- Independence between the transmitted message and the information
- Perfect Secrecy achieved with one-time pad (Vernam cipher).
- Shannon: This method is also necessary. (i.e. \(R_k > H(X) \))
One-time Pad

Information: 0110101000101101

Key: 110100110100101

⊕

Message: 101110010110011
Proof of Perfect Secrecy

Consider 1 bit: \(M = X + K \mod 2 \)

\[
\begin{align*}
P(M=0|X=0) &= 1/2 \\
P(M=0|X=1) &= 1/2
\end{align*}
\]

Therefore, \(X \perp M \)
Many versions of one-time pad

- Each key specifies a one-to-one mapping.
- With a little excess message rate and excess key rate, a random mapping for each key will achieve near perfect secrecy.
Necessity of one-time-pad

For each key there is a one-to-one mapping from X to M:

\[
support(M) \geq support(X)
\]

Perfect secrecy:

\[
P(M|X) = P(M)
\]

For each X, all randomness from key:

\[
support(K) \geq support(M)
\]
Overview

Channel Capacity

Source Coding

Secure Channel Coding

Secure Source Coding
Let the information signal be i.i.d. with a known distribution P_X.

Represent as: $X_1, X_2, \ldots, X_n = X^n$

Codec functions over the block
Compression

Encoder: \(f : \mathcal{X}^n \rightarrow [2^n R] \)
Decoder: \(g : [2^n R] \rightarrow \mathcal{Y}^n \)
Compress and Conceal

- Compress losslessly to $R = H(X)$
- One-time-pad the result: $R_k = R$
Usual Relaxations

- Lossless compression:
 - Allow negligible error probability

- Perfect secrecy:
 - Allow negligible leakage
Lossless Compression
Lossless Compression

- \(R \) is achievable if for any \(\varepsilon > 0 \), there exists an \(n \), \(f \), and \(g \) such that
 \[P(X^n \neq Y^n) < \varepsilon \]
- Minimum achievable rate is \(H(X) \)
Entropy

\[H(X) = \mathbb{E} \log \frac{1}{P_X(X)} \]

\[H(X) \geq 0 \quad \text{(deterministic)} \]

\[H(X) \leq \log |X| \quad \text{(uniform)} \]

\[H(X,Y,Z) = H(X) + H(Y|X) + H(Z|X,Y) \]
Binary Entropy

- X is Bern(p)
- $P(X=1) = p$, $P(X=0) = 1-p$
- $H(X) = p \log(1/p) + (1-p) \log(1/(1-p))$
- Call this the binary entropy function $h(p)$
Conditional Entropy

\[H(Y|X) = E_X H_{P_Y|X}(Y) \]

\[= E \log \frac{1}{P_Y|X(Y|X)} \]
Mutual Information

\[I(X; Y) = H(X) + H(Y) - H(X, Y) \]
\[= H(X) - H(X|Y) \]
\[= H(Y) - H(Y|X) \]

\[I(X; Y) \geq 0 \text{ (independent)} \]
\[I(X; Y) \leq H(X) \text{ (function)} \]
\[I(X; Y, Z) = I(X; Y) + I(X; Z|Y) \]
Data-processing Inequality

- Markov chain: $X-Y-Z$
- $I(X;Z) \leq I(X;Y)$
Typical Set and A.E.P.

- $A = \{x^n : P(x^n) \approx 2^{-nH(X)}\}$
- Exponent within ε of $H(X)$
- $P(A) \to 1$ (law of large numbers)
- $1/n \sum \log(P(X_i)) \to E \log P(X_i) = -H(X)$
- $|A| \approx 2^{nH(X)}$
Lossless Compression

- Enumerate the typical set:
- Error if X^n not typical (negligible probability)
- $R \approx H(X)$
Converse

- $I(X^n;Y^n) \leq I(X^n;M) \leq H(M) \leq nR$

- $I(X^n;Y^n) = nH(X) - H(X^n|Y^n)$

- Fano's inequality:
 - $H(X^n|Y^n) \leq n f(p(X^n \neq Y^n))$
 - $f(x) \to 0$ as $x \to 0$, (depends on alphabet size)
Converse for Perfect Secrecy
(Block coding)
Information Theoretic Argument

\[H(K) \geq I(K;X^n|M) = H(X^n|M) = H(M) \]
Perfect Secrecy Metrics
Relative Entropy

- Distance between two distributions

\[D(P \parallel Q) = E_P \log \frac{P(X)}{Q(X)} \]

- \[D(P \parallel Q) \geq 0 \ (P=Q) \]
- Not symmetric and no triangle inequality
- Also called
 - “divergence”
 - “K-L divergence”
M.I. as Divergence

Mutual Information:

\[I(X;Y) = D(P_{x,y} \parallel P_x P_y) \]
Total Variation

- Another distance between distributions

\[D_{TV}(P||Q) = \sup_{A \in \mathcal{F}} P(A) - Q(A) \]

\[= \sum_x |p(x) - q(x)| \]

- \(D_{TV}(P||Q) \geq 0 \) (\(P=Q \))

- True distance metric:
 - Symmetric; triangle inequality; etc.

- Directly related to hypothesis testing (used in crypto)
Asymptotic Equivalence

- Pinsker’s inequality:
 \[D_{TV}(P||Q) \leq \sqrt{1/2 \ D_{KL}(P||Q)} \]

- Converse: If \(P \ll Q \) and \(Q \) is i.i.d. and discrete
 - If \(D_{TV}(P||Q) \) decays exponentially
 - Then \(D_{KL}(P||Q) \) decays with the same exponent
Perfect Secrecy Relaxations

- **“Strong secrecy”**: $I(X^n;Y^n)$ negligible
- **“Weak secrecy”**: $1/n I(X^n;Y^n)$ negligible
- **Total variation**: $D_{TV}(P_{X^n,Y^n} || P_{X^n} P_{Y^n})$ negligible
Many methods for lossless compression and perfect secrecy

- Random codebook generation
- Random binning
- Linear encoding
Lossy Compression
Rate-Distortion Theory
Average Distortion

- We need a relevant metric for lossy transmission

- Bounded distortion function: \(d(x, y) \)

- Average distortion:

\[
d(x^n, y^n) = \frac{1}{n} \sum_i d(x_i, y_i)
\]
Need to encode more carefully

- Random binning and linear encoding perform poorly
Puzzle

- Given an n-bit random sequence

- 1-bit distortion:
 - How many bits of description are needed to have no more than one bit of distortion? \((n - ?)\)

- 1-bit transmission:
 - How much distortion can be achieved with only a one-bit description? \((n/2 - ?)\)
Definition of achievability

Rate R is achievable for distortion D if there exist n, f, and g operating at rate R such that

$$E \ d(X^n, Y^n) \leq D$$
Rate-Distortion Theorem [Shannon]

\[R(D) = \min_{P_{Y|X} : \mathbb{E}d < D} I(X;Y) \]

- Choose \(P_{Y|X} \) (given \(P_X \) and \(d(x,y) \)):
 - \(R > I(X;Y) \)
 - \(D > \mathbb{E}d(X,Y) \)

Formula is still an optimization problem.
Examples

- Binary signal, Hamming distortion:
 - \(R(D) = [h(p) - h(D)]_+ \)
 - Choice of \(P_{Y|X} \) is s.t. \(P_{X|Y} \) is BSC(D)

- Gaussian signal, squared-error:
 - \(R(D) = [\frac{1}{2} \log(\sigma/D)]_+ \)
 - Choice of \(P_{Y|X} \) is s.t. \(P_{X|Y} \) is AGN(D)
Achievability Proof

- Proofs come later
- General idea—Covering
- New simple proof (likelihood encoder)
Alternative Lossy Compression Theory

- No distortion function
- Measure quality by entropy:
 \[D = \frac{1}{n} H(X^n|M) \]
- Theorem: \[R(D) = H(X) - D \]
- Not very interesting theory (almost any encoding works)
- Not very meaningful operationally

(normalized "equivocation")
Source Coding for Secrecy
Setting

- Same as Shannon cipher

\[f : \mathcal{X}^n \times [2^{nR_0}] \rightarrow [2^{nR}] \]
\[g : [2^{nR}] \times [2^{nR_0}] \rightarrow \mathcal{Y}^n \]
Performance Metric

- Theory will include:
 - Lossy reconstruction
 - Imperfect secrecy

- Secrecy also measured by distortion
 - Lowest distortion achievable by the eavesdropper
Two distortion functions

- Distortion at the intended receiver:
 \[d_1(x^n, y^n) = \frac{1}{n} \sum_i d_1(x_i, y_i) \]

- Distortion at the eavesdropper:
 \[d_2(x^n, z^n) = \frac{1}{n} \sum_i d_2(x_i, z_i) \]
Pessimistic

Assume eavesdropper makes best use of the information:

$$D_2 = \min_{Z^n = z^n(M)} \mathbb{E} d_2(X^n, Z^n)$$
More pessimistic

- Causal disclosure
- The eavesdropper sees X and Y causally (potentially noisy)
- Call this extra information W
- “Real-time” estimation
Setting

* With causal disclosure

\[X_n \xrightarrow{f} R_k^{(K)} \xrightarrow{R} R^{(M)} \xrightarrow{g} Y_n \]

\[Z_n \xrightarrow{W^{t-1}} \]
What is W?

- Special cases: \(W=X, W=Y, W=(X,Y), W=\emptyset \)
 - No disclosure
 - Full disclosure

- Noisy observations: \(P_{W_1|X}, P_{W_2|Y}, W=(W_1, W_2) \)
Why causal disclosure?

- More general than no disclosure
- Application to real-time systems
 - (however, the encoder is not RT)
- More satisfying and natural theory emerges
- Game theory interpretation
Non-causal disclosure

- Some signals are not “time signals”
- We will also consider non-causal disclosure
- The theory is almost the same as causal disclosure
“Payoff function”

- Allow for joint distortion function
 - $\pi(x,y,z)$
 - $\pi(x^n,y^n,z^n) = \frac{1}{n} \sum_i \pi(x_i,y_i,z_i)$
- Can think of π as payoff in repeated game
Definition of achievability

\((R, R_k, \Pi)\) is achievable if there exists an \(n\), \(f\), and \(g\) operating at rates \(R\) and \(R_k\) such that

\[
\min_{\text{(adversary)}} E \pi(X^n, Y^n, Z^n) \geq \Pi
\]
Rate-Distortion Theory for Secrecy Systems

- \((R,R_k,\Pi)\) achievable if and only if
 - There exist \(U,V,Y\) s.t.
 - \(W_1 \rightarrow X \rightarrow (U,V) \rightarrow Y \rightarrow W_2\)
 - \(R > I(X;U,V)\)
 - \(R_k > I(W;V|U)\)
 - \(\min_z(\cdot) E \pi(X,Y,z(U)) > \Pi\)

Recall that we are given: \(P_X, P_{W_1|X}\), and \(P_{W_2|Y}\)
No Disclosure

- $W = \emptyset$
- Optimal to choose: $U = \emptyset$, $V = Y$
- (R, R_k, R) achievable if and only if
 - There exists $P_{Y|X}$ s.t.
 - $R > I(X;Y)$
 - $R_k > 0$
 - $\min_z E \pi(X,Y,z) > \Pi$

Perfect secrecy with negligible key!
Example of negligible key

- Suppose X is Bern$(1/2)$
- We can transmit X^n losslessly
 - n bits of communication ($R=1$)
 - 1 bit of secret key ($R_k=1/n \to 0$)
- If $K=0$, $M=X^n$.
- If $K=1$, M is bit-wise-not of X^n.

Eavesdropper cannot successfully estimate any bit of X^n.
Full Causal Disclosure

(R, R_k, Π) achievable if and only if

- There exist U, V, Y s.t.
 - $X \rightarrow (U, V) \rightarrow Y$
 - $R > I(X; U, V)$
 - $R_k > I(X, Y; V | U)$
 - $\min_z(.) \ E \pi(X, Y, z(U)) > \Pi$

Forced to achieve very robust secrecy
Binary Jamming Example

- X is Bern(1/2)
- $\pi(x,y,z) = \delta\{x=y\neq z\}$

(a) No causal disclosure.
(b) Node A causally disclosed.
(c) Node B causally disclosed.
(d) Nodes A and B causally disclosed.
Lossless Transmission (Imperfect Secrecy)

- Set \(Y = X \) in previous theorem
- Must have \(V = X \) also
- \((R, R_k, \Pi)\) achievable if and only if
 - There exists \(U \) s.t.
 - \(W - X - U \)
 - \(R > H(X) \)
 - \(R_k > I(W;X|U) \)
 - \(\min_{z(.)} \mathbb{E} \pi(X, z(U)) > \Pi \)

Not affected by optimization

Reduces to a linear program
Lossless Transmission (Imperfect Secrecy)

- Set \(Y = X \) in previous theorem
- Must have \(V = X \) also
- \((R, R_k, D)\) achievable if and only if
 - There exists \(U \) s.t.
 - \(W - X - U \)
 - \(R > H(X) \)
 - \(R_k > I(W;X|U) \)
 - \(\min_{z(.)} \mathbb{E} \pi(X, z(U)) > D \)
 - Not affected by optimization
 - Reduces to a linear program
Hamming Distortion

- For any source distribution and full causal disclosure

\[D = 1 - \max_x P_x(x) \]

\[(\log(i), 1-1/i) \]
Non-causal disclosure

- Disclose all times except the one being estimated
- Same achievable region
- Disclose all times including the one being estimated
- Eavesdropper uses U and W
Alternative Problem

- No distortion at the eavesdropper
- Measure secrecy by equivocation rate
 - \(\Delta x = \frac{1}{n} H(X^n|M) \)
- Or, for lossy compression
 - \(\Delta x,y = \frac{1}{n} H(X^n,Y^n|M) \)
Wyner's Wiretap Channel

'75
Equivocation rate

Perfect secrecy until C_S
Following Wyner [8], we shall measure confidentiality by equivocation. Our main result is a single-letter characterization of the set of triples \((R_1, R_e, R_0) \) such that, in addition to a common message at rate \(R_0 \), a private message can be sent reliably at rate \(R_1 \) to receiver 1 with equivocation at least \(R_e \) per channel use at receiver 2. This con-
Villard-Piantanida

'10
Recover equivocation from RD Theory

- Equivocation rate is one special case of rate-distortion theory
- Causal disclosure is necessary
Log-loss function

- Distortion function
 \[d(x,z) = \log \frac{1}{z(x)} \]
 \(z \) is a distribution

- Notice:
 \[
 \min_{z(m)} E d(X,z(M)) = H(X|M) \\
 \min_{z(x,m)} E \log \frac{1}{z(x,m)}
 \]
Equivocation if X

- Log-loss function
- Causal disclosure of X (i.e. $W=X$)

\[\min \{z(m,x_{i+1})\} \leq \frac{1}{n} \sum_i \log \frac{1}{z(X_i,M,X_{i-1})} \]
\[= \frac{1}{n} \sum_i H(X_i|M,X_{i-1}) \]
\[= \frac{1}{n} H(X^n|M) \]

- Distortion metric is now equivocation
Rate-Distortion
Theorem Applies

(R, R_k, Π) achievable if and only if

- There exist U, V, Y s.t.
- $W_1 - X - (U, V) - Y - W_2$
- $R > I(X; U, V)$
- $R_k > I(W; V|U)$
- $\min_{z(.)} E \pi(X, Y, z(U)) > \Pi$
Rate-Distortion Theorem Applies

(R, R_k, Δ) achievable if and only if

1. There exist U, V, Y s.t.
2. $X \rightarrow (U, V) \rightarrow Y$
3. $R > I(X; U, V)$
4. $R_k > I(X; V|U)$
5. $\min_z(.) E \log(1/z(x,u)) > \Delta$
Rate-Distortion Theorem Applies

\((R, R_k, \Delta)\) achievable if and only if

- There exist \(U, V, Y\) s.t.
 - \(X \rightarrow (U, V) \rightarrow Y\)
 - \(R > I(X; U, V)\)
 - \(R_k > I(X; V|U)\)
 - \(H(X|U) > \Delta\)
Rate-Distortion Theorem Applies

\((R, R_k, \Delta)\) achievable if and only if

- There exist \(Y\) s.t.
 \[R > I(X;Y) \]
 \[H(X|Y) + R_k > \Delta \]
 \[H(X) > \Delta \]

implicit distortion constraint on reconstruction
Summary

- **Equivocation of X**
 \[
 \max\{n,f,g\} \frac{1}{n} H(X^n|M) = \min \{H(X), H(X|Y) + R_k\}
 \]

- **Equivocation of Y**
 \[
 \max\{n,f,g\} \frac{1}{n} H(Y^n|M) = \max\{X-U-Y\} \min \{H(Y), H(Y|U) + R_k\}
 \]

- **Equivocation of (X,Y)**
 \[
 \max\{n,f,g\} \frac{1}{n} H(X^n,Y^n|M) = \max\{X-U-Y\} \min \{H(X,Y), H(X,Y|U) + R_k\}
 \]
Achievability
Proofs
Likelihood Encoder

- **Codebook:** $C = \{y^n(m)\}$
- **Test Channel:** $P'_{Y|X}$
- Let $L(m, x^n)$ be the likelihood of message m upon observing $X^n = x^n$ through a memoryless channel $P'_{X|Y}$

 $$L(m, x^n) = \prod L(m, x^n) = \prod_i P'_{X|Y}(x_i | y_i(m))$$

- **Encoder:** $P_{M|X} \propto L(m, x^n)$
Soft-covering Lemma

Codebook: \(\mathcal{C} = \{ y^n(m) \} \)

Memoryless Channel: \(\mathbf{P}'_{Y|X} \)

Distribution induced by uniformly sampling from the codebook and passing through the channel:

\[
Q(x^n) = \frac{1}{|\mathcal{C}|} \sum_{m} \prod_{i} P'_{X|Y}(x_i|y_i(m))
\]

If \(R > I(X;Y) \) and codebook is generated randomly:

\[
E_c \mathbf{d}_{\mathbf{TV}}(Q^n, P^n) \to 0
\]
Properties of TV

- Continuity of expectation:
 \[|E_P f(X) - E_Q f(X)| \leq d_{TV}(P \| Q) \cdot \max_x |f(x)| \]

- Triangle inequality

- Marginal:
 \[d_{TV}(P_X \| Q_X) \leq d_{TV}(P_{X,Y} \| Q_{X,Y}) \]

- Same channel:
 \[d_{TV}(P_X \| Q_X) = d_{TV}(P_X P_Y \| Q_X P_Y \| X) \]
Proof of RD Theorem

- Choose $P'_{Y|X}$ s.t. $R > I(X;Y)$ and $E d(X,Y) < D$
- Likelihood encoder (random codebook)
- Induced distribution
 $P_{X}(x^n)P_{LE}(m|x^n)P_{D}(y^n|m)$
- Idealized distribution
 $Q_{X,M}(x^n,m)P_{D}(y^n|m)$
 Q is uniform on M and memoryless channel from $y^n(M)$ to X^n according to $P'_{X|Y}$
Approximating Distribution

- Same conditional distribution:
 \[P(m, y^n | x^n) = Q(m, y^n | x^n) \]

- Soft-covering lemma applies to \(Q \):
 \[\mathbb{E}_c d_{TV}(P(x^n) \| Q(x^n)) \to 0 \]
Distortion of Q

$$\mathbb{E}_c \mathbb{E}_q d(X^n, Y^n) = \mathbb{E}_{p'} d(X, Y)$$
Final Step of Proof

\[E_C E_P \ d(X^n, Y^n) \leq E_C E_P \ d(X^n, Y^n) + E_C \ d_{TV}(P||Q) \ 2 \ d_{max} \]

\[= E_{P'} \ d(X, Y) + \epsilon_n \]

\[< D \]
Proof of RD for secrecy systems

- Full disclosure: $W = (X, Y)$
- Choose U, V, Y s.t. $X - (U, V) - Y$, $R > I(X; U, V)$, $R_k > (X, Y; V | U)$
- Superposition code:
 - $C_U = \{ u^n(m_1) \}$, $C_V = \{ v^n(m_1, m_2, k) \}$
- Likelihood Encoder
- Decoder looks up u^n and v^n then produces Y^n according to $P_{Y^n|U,V}$
Approximating Distribution

Superposition soft-covering: \(P_{X|K} \approx Q_{X|K} \)
Secrecy Analysis

Conditional soft-covering: \(P_{X,Y|M_1,M_2} = P_{X,Y|u(m)} \)
Ideal Distribution

Memoryless channel: Adversary's best z_i only depends on $u_i(m_1)$
Synthetic noise

RDSS with full causal disclosure extracts an intuitive communication system.
Synthetic noise

RDSS with full causal disclosure extracts an intuitive communication system

\[P'(y, u|x) \]

Memoryless
Other Proofs

- Wyner-Ziv
- Villard-Piantanida
Converse Proof
Rate-Distortion Theory for Secrecy Systems

Suppose an \((R,R_f,\Pi)\) scheme exists:

- \(H(M) \leq nR\)
- \(H(K) \leq nR_k\)
- \(X^n \perp K\)
- \(W_1^n - X^n - (M,K) - Y^n - W_2^n\) (Markov chain)

Define: \(U_i = (M,W_1^{i-1},W_2^{i-1})\) and \(V = K\)

Let \(Q \sim \text{Unif}\{1,...,n\}\), independent of all above variables

Define: \(U = (U_Q,Q), X = X_Q, Y = Y_Q, W = (W_1,Q,W_2,Q)\)
Rate Bound

\[nR \geq H(M) \]
\[\geq I(M;X^n|K) \]
\[= I(M,K;X^n) \]
\[= \sum_q I(M,K;X_q^{q-1}) \]
\[= \sum_q I(M,K;X_q^{q-1};X_q) \]
\[= \sum_q I(M,K,X_q^{q-1},W_1^{q-1},W_2^{q-1};X_q) \]
\[= \sum_q I(U_q,V;X_q) \]
\[= n I(U_0,V;X_Q|Q) \]
\[= n I(U_0,V,Q;X_0) \]
\[= n I(U,V;X) \]
Key Rate Bound

\[nR_k \geq H(K) \geq I(K;W_1^n, W_2^n | M) = \sum_q I(K;W_1,q, W_2,q | M, W_1^{q-1}, W_2^{q-1}) = \sum_q I(K;W_1,q, W_2,q | U_q) = n I(K;W_1^Q, W_2^Q | U_Q, Q) = n I(V;W | U) \]
Performance Bound

\[\Pi \leq \min(\text{adversary}) \mathbb{E} \frac{1}{n} \sum_i \pi(X_i, Y_i, Z_i) \]
\[= \min(\text{adversary}) \mathbb{E} \mathbb{E} (\pi(X_Q, Y_Q, Z_Q) | Q) \]
\[= \min(\text{adversary}) \mathbb{E} \pi(X, Y, Z) \]
\[= \min_z(\mu) \mathbb{E} \pi(X, Y, z(U)) \]