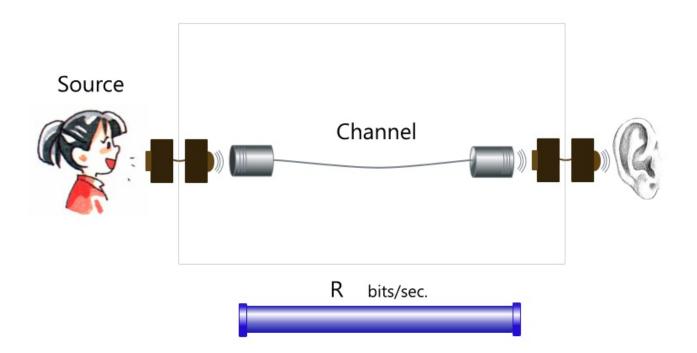
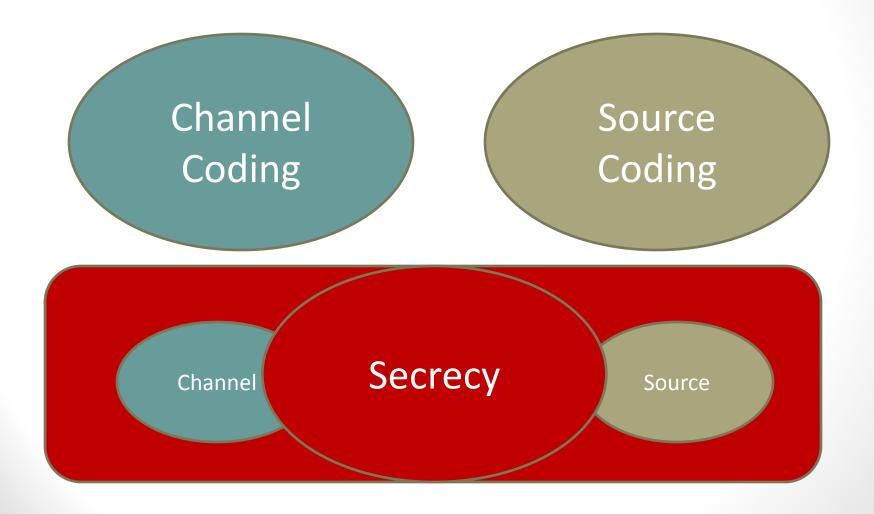


Rate-distortion Theory for Comm. in Games

Paul Cuff, C. Schieler, E. Song, S. Satpathy Electrical Engineering Princeton University

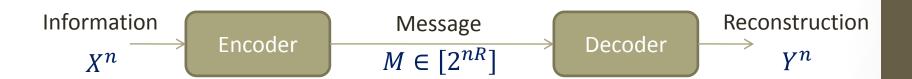


Information Theory



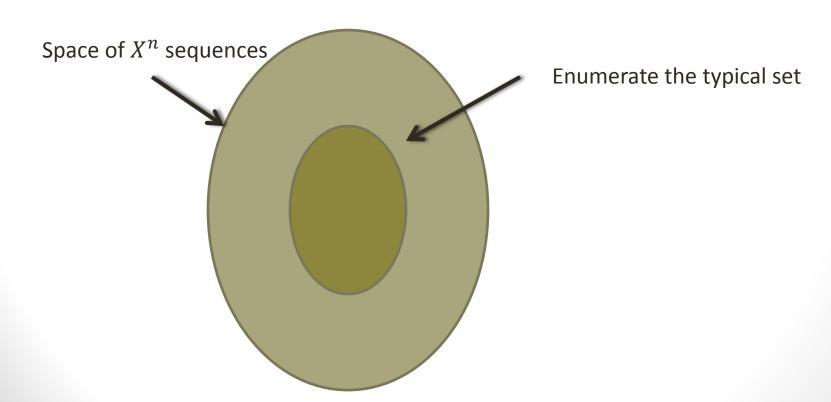
Source Coding

• Describe an information signal (source) with a message.



Entropy

- If X^n is i.i.d. according to P_X
- R > H(X) is necessary and sufficient for lossless reconstruction



Lossy Source Coding

- What if the decoder must reconstruct with less than complete information?
- Error probability will be close to one
- Distortion as a performance metric

$$\frac{1}{n} \sum_{i=1}^{n} d(X_i, Y_i)$$

Puzzle

Describe an n-bit random sequence

Allow 1 bit of distortion

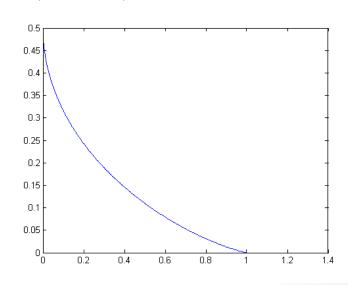
Send only 1 bit

Rate Distortion Theorem

- [Shannon]
- Choose p(y|x):

$$R > I(X;Y)$$
$$D > E d(X,Y)$$

$$D \ge 1 + p \log p + (1 - p) \log(1 - p)$$



Game Setting

- X is the state (stochastic)
- Y and Z are the actions of the players
- $\pi(X,Y,Z)$ is the game payoff

- Information structure:
 - How does information about X effect the game?
 - Correlated equilibriums, etc.
- Optimal Information:
 - What is the most useful information about X?

Simplifying Assumptions

- *X*, *Y*, and *Z* discrete
- Zero-sum game
- State information has cardinality constraint and is designed to help Player Y.

Communication Details

- Repeated Game:
 - Full information of past known to both players
 - Block communication allowed
- Communication specifics
 - Constraint on average bit rate per iteration of game
 - i.e. Cardinality of information constrained to 2^{nR}
 - Communication viewed by both parties
 - Secret key known only to encoder and Player Y
 - Also at a restricted rate R₀

Question to Answer

- What is the max-min average payoff for Player Y?
 - Maximize over encodings and strategies
 - Minimize over Player Z's strategy.

$$\max_{n} \min_{\substack{\{Z_t = z_t(M, X^{t-1}, Y^{t-1}\}\\ Strategies}} \mathbf{E} \frac{1}{n} \sum_{t=1}^{n} \pi(X_t, Y_t, Z_t)$$

Payoff-Rate Function

Maximum achievable average payoff

Theorem:

$$\Pi(R, R_0) = \max \left\{ \begin{array}{rcl} & \exists \ p(u, v | x) p(y | u, v) \ s.t. \\ R & \geq & I(X; U, V), \\ R_0 & \geq & I(W; V | U), \\ \Pi & = & \min_{z(u)} \mathbf{E} \ \pi(X, Y, z(U)). \end{array} \right\}$$

Markov relationship:

$$X - (U, V) - Y$$

Block Encoding vs. Instantaneous

Instantaneous Encoding

•
$$|\mathcal{V}| \leq 2^{R_0}$$

•
$$|\mathcal{U}| \leq 2^R$$

•
$$X - (U, V) - Y$$

Block Encoding Asymptotics

•
$$I(V; X, Y|U) \leq R_0$$

•
$$I(U;X|V) + I(V;X) \le R$$

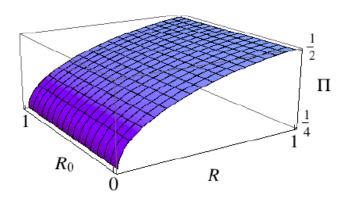
•
$$X - (U, V) - Y$$

Generalizations

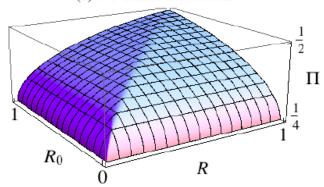
- Those we can solve:
 - Player Z sees only partial information of past
 - Player Y sees only partial information of past
 - Payoff is a vector
 - X, Y, and Z are not discrete
 - Player Z sees information about X and Y ahead of time
- Those we can't:
 - Communication (M) is not seen by Player Y
 - Past information delayed to Player Y

Binary Jamming Example

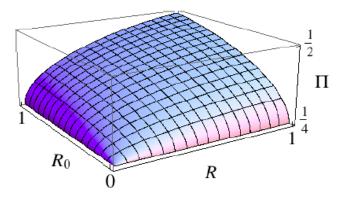
State distribution is Bernoulli(1/2). Payoff: One point if Y=X but $Z\neq X$.



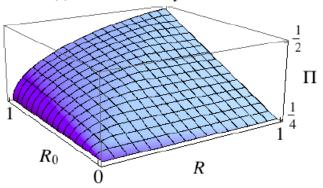
(a) No causal disclosure.



(b) Node A causally disclosed.



(c) Node B causally disclosed.

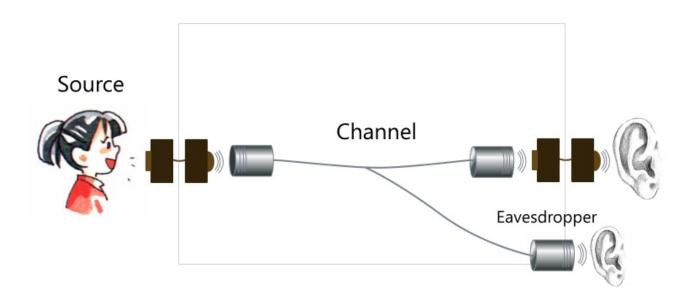


(d) Nodes A and B causally disclosed.

Information Theory Innovations

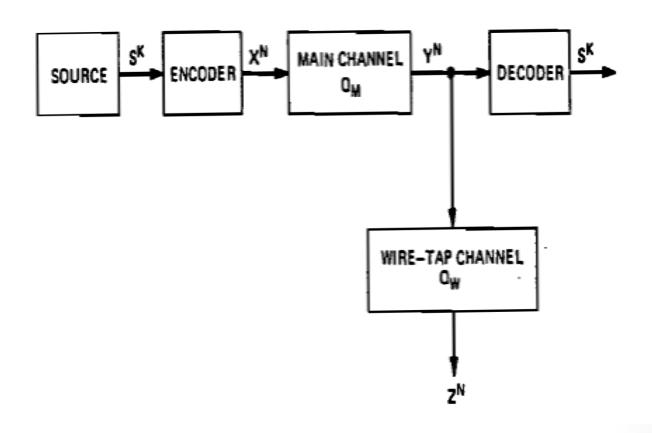
- Use digital resources to create an arbitrary "analog" channel
 - Broadcast channel: $P_{Y,U|X}$
 - Requires stochastic decoder
- New encoder design for simple analysis
 - Likelihood encoder

Information Theoretic Security



Wiretap Channel

[Wyner 75]



Wiretap Channel

[Wyner 75]

We take the equivocation

$$\Delta \triangleq \frac{1}{K} H(S^K | Z^N)$$

as a measure of the degree to which the wire-tapper is confused.

Wiretap Channel

[Wyner 75]

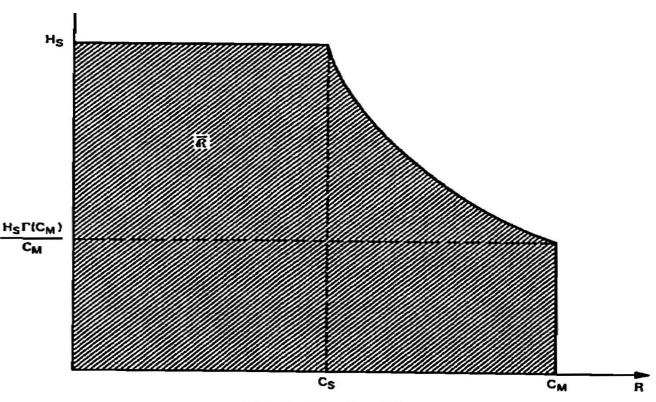


Fig. 3-Region R.

Theorem 2: The set \mathfrak{A} , as defined above, is equal to $\overline{\mathfrak{A}}$, where

$$\overline{\mathfrak{R}} \triangleq \{(R,d): 0 \leq R \leq C_M, 0 \leq d \leq H_S, Rd \leq H_S\Gamma(R)\}.$$

Confidential Messages

[Csiszar, Korner 78]

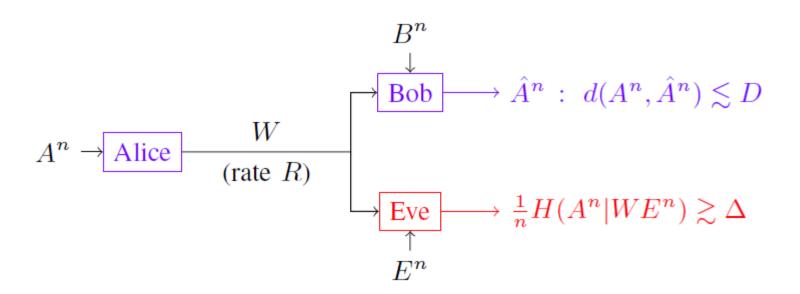
Following Wyner [8], we shall measure confidentiality by equivocation.

Confidential Messages

[Csiszar, Korner 78]

Following Wyner [8], we shall measure confidentiality by equivocation. Our main result is a single-letter characterization of the set of triples (R_1, R_e, R_0) such that, in addition to a common message at rate R_0 , a private message can be sent reliably at rate R_1 to receiver 1 with equivocation at least R_e per channel use at receiver 2.

Villard-Piantanida 2010



Our Approach to Security

- Communication for games is a more meaningful measurement of "secure" communication.
- Don't ask encoder to maximize equivocation.
- Ask encoder to maximize score in a game.
 - Equivalent to forcing an eavesdropper to have high distortion when reconstructing the signal.
- Natural extension of rate-distortion theory to secrecy systems.
 - Problem involves:
 - Source distribution
 - Rates
 - A payoff function

The Best Part

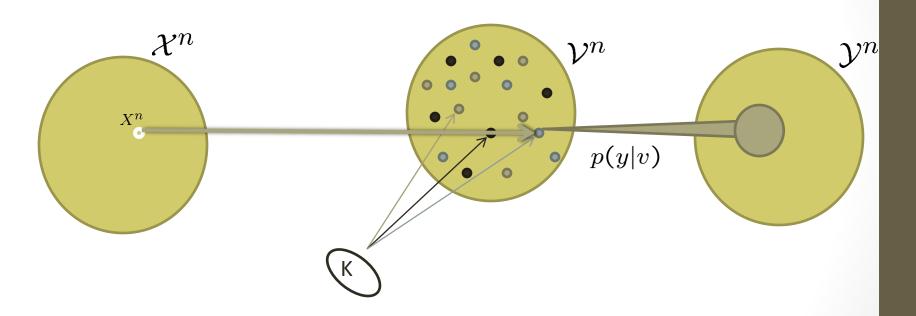
- Rate-distortion theory for secrecy (i.e. comm. for games)
 yields maximum equivocation as a special case.
 - "Log-loss function"

$$\pi_1(x, y, z) = \log \frac{1}{z(x)}$$

Summary

- Formula to characterize asymptotic performance of block communication of state in zero-sum games
 - Synthetic analog channel
 - Likelihood encoder
- Results yield more general analysis of security communication than current tradition of using equivocation (i.e. "information leakage rate").

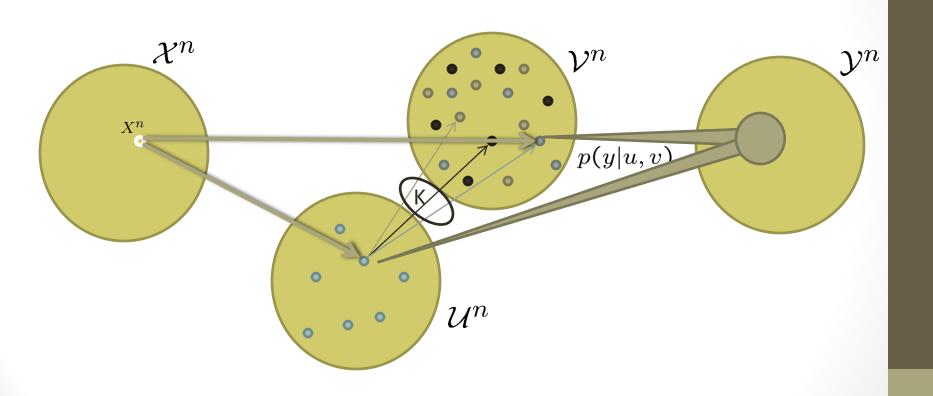
Structure of Strong Coord.



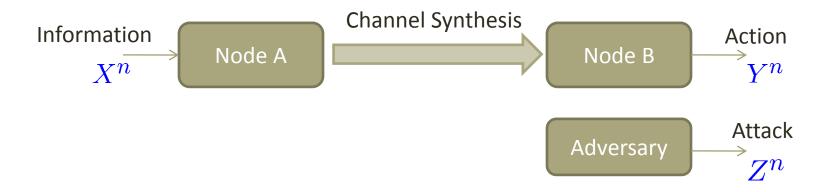
Comm. rate: R > I(X; U)

Secret Key: $R + R_0 > I(X, Y; U)$

Structure of Secrecy Code

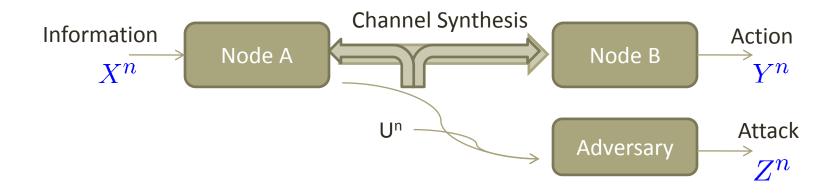


Strong Coord. for Secrecy



Not optimal use of resources!

Strong Coord. for Secrecy

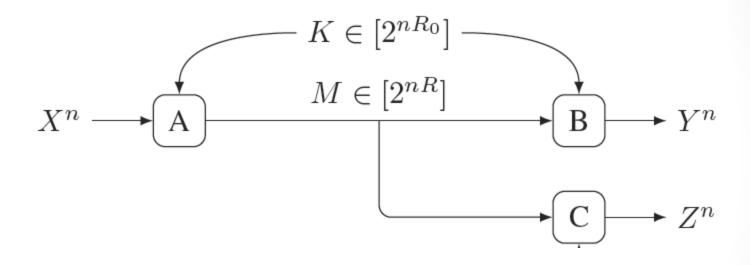


Reveal auxiliary Uⁿ "in the clear"

Best Reconstruction Yields Entropy

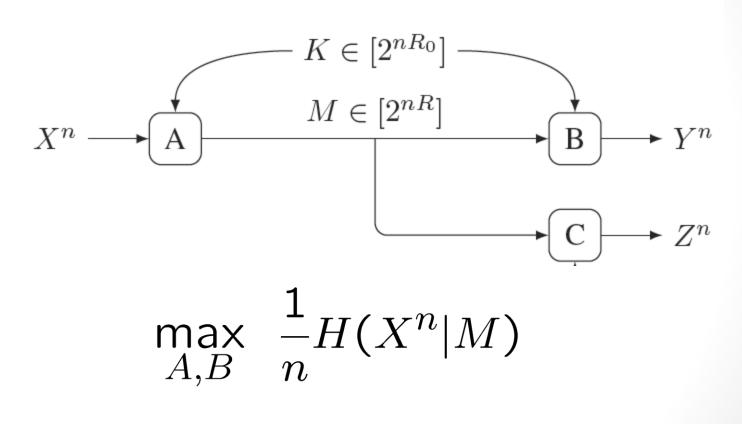
$$\min_{Z=z(U)} \mathbf{E} \log \frac{1}{Z(X)} = H(X|U)$$

Log-loss π_1 (disclose X causally)



$$\max_{A,B} \max_{\{Z_i\}_{i=1}^n} \prod_{i=1}^n \prod_{i=1}^n M(X_i, Y_i, Z_i)$$

Result 1 from Secrecy R-D Theory



 $= \min\{H(X|Y) + R_0, H(X)\}\$