Appendix C. Proofs

Condition A1. Random draw from population. Let \(\mu \) be a probability measure on \((\Omega, \mathcal{F})\). Each \(\omega \in \Omega \) represents an individual. \((\Omega, \mathcal{F}, \mu)\) describes the probabilities of drawing individuals from a (possibly infinite) population.

Condition A2. Stochastic treatment assignment. For each \(\omega \in \Omega \), let \(v_\omega \) be a probability measure on \((\Delta, \mathcal{D})\). \((\Delta, \mathcal{D}, v_\omega)\) describes the probabilities associated with receiving the treatment (or, in the RDD, the score \(V \)), for each individual \(\omega \). Assume that for any \(B \in \mathcal{D} \), \(v_\omega (B) \) as a function of \(\omega \) is measurable \(\mathcal{F} \). Let \(\mathcal{G} \) be the \(\sigma \)-field consisting of all sets \(\Omega \times A \), where \(A \in \mathcal{D} \).

Condition A3. Probabilities for the overall experiment. Define \(P \) as follows: \(\forall E \in \mathcal{F} \times \mathcal{D} \), \(P (E) = \int_{\Omega} v_\omega [\delta : (\omega, \delta) \in E] \mu (d\omega) \). It can be shown that \(P \) is a probability measure on \((\Omega \times \{0, 1\}, \mathcal{F} \times \mathcal{D})\).

Condition A4. Pre-determined characteristics. Let \(X = x (\omega) \) be a real-valued function that is measurable \(\mathcal{FD} \). It follows that it is also measurable \(\mathcal{F} \).

Condition A5. Finite first moments. \(E_P \) and \(E_\mu \) denote expectations with respect to probability measures \(P \) and \(\mu \), respectively. Where appropriate, \(Y, Y_1, Y_0, \frac{f_\omega (0)}{f_\omega (0)} Y, \frac{f_\omega (0)}{f_\omega (0)} Y_1, \) and \(\frac{f_\omega (0)}{f_\omega (0)} Y_0 \) are each assumed to be integrable \(P \) and integrable \(\mu \).

Condition B1. Binary treatment assignment model. Let \(\Delta = \{0, 1\} \) and \(\mathcal{D} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\} \). Define the random variable \(D \) as \(D = \delta, \delta \in \Delta \), which is measurable \(\mathcal{FD} \).

Condition B2. Regression discontinuity design. Let \(\Delta = \mathbb{R} \), and \(\mathcal{D} = \mathbb{R}^1 \) be the class of linear Borel sets. Define the random variable \(V \) – measurable on \(\mathcal{FD} \) – as \(V (\delta) = \delta, \delta \in \Delta \), and let \(D = 1 [V \geq 0] \).

Condition C1. Potential outcomes. Let \(Y_1 = y_1 (\omega), Y_0 = y_0 (\omega) \), be real-valued functions that are measurable \(\mathcal{FD} \) (and hence measurable \(\mathcal{F} \)). Let \(Y = DY_1 + (1 - D) Y_0 \).

Condition C2. Potential outcome function. Let \(Y = y (\omega, \delta) \) be a real-valued function that is measurable \(\mathcal{FD} \). Let \(y (\cdot, \cdot) \) be continuous in the second argument except at \(\delta = 0 \), where the function is only continuous from the right. Define the function \(Y^+ = y (\omega, 0) \) and \(Y^- = \lim_{\varepsilon \to 0^+} y (\omega, -\varepsilon) \).
Condition D1. Treatment randomization. v_{ω} is identical for all $\omega \in \Omega$

Condition D2. Continuous density of score. Let $F_{\omega} (\delta) = v_{\omega} (-\infty, \delta]$, and $f_{\omega} (\delta)$ its derivative with respect to δ. Let $f (\delta) = \int_{\Omega} f_{\omega} (\delta) \mu (d\omega)$. Assume that $0 < f_{\omega} (\delta)$, and $f_{\omega} (\delta)$ is continuous in δ on \mathbb{R}. (Note that if v_{ω} is measurable \mathcal{F}, one can show that in this set-up, so too are F_{ω} and f_{ω}).

Proposition 1. If Conditions A1-A5, B1, C1, and D1 hold, then:

a) $\forall F \in \mathcal{F}$, $P [F \times \Delta | D = 1] = P [F \times \Delta | D = 0] = P [F \times \Delta] = \mu [F]$

b) $E_{P} [Y | D = 1] - E_{P} [Y | D = 0] = E_{\mu} [Y_{1} - Y_{0}] \equiv ATE$

c) $\forall x_{0} \in \mathbb{R}, P [X \leq x_{0} | D = 1] = P [X \leq x_{0} | D = 0] = P [X \leq x_{0}] = \mu [\omega : X \leq x_{0}]$

Proof. a) $P [F \times \Delta | D = 1] = P [(F \times \Delta) \cap (\Omega \times \{1\})] / P [\Omega \times \{1\}]$. Numerator is $\int_{F \times \{1\}} P (d (\omega, \delta))$. This is equal to $\int_{F} \left[\int_{\Omega} v_{\omega} (d\delta) \right] \mu (d\omega) = v_{\omega} (\{1\}) \cdot \mu [F]$ by 18.20.c of Billingsley (1995) and by D1. Similarly, denominator is $v_{\omega} (\{1\})$. Similar argument holds for $P [F \times \Delta | D = 0]$. b) Need to show that conditional expectation of Y_{1} given \mathcal{G}, evaluated at $D = 1$ is equal to $E_{\mu} [Y_{1}]$. It can be shown that the conditional expectation of Y_{1} given \mathcal{G} can be written as $\alpha (\delta_{0}) \equiv \frac{1}{P [\Omega \times \{1\}]} \int_{\Omega \times \{1\}} Y_{\delta_{0}} P (d (\omega, \delta))$, for $\delta_{0} = 0$ and 1. Consider the case when $\delta_{0} = 1$. We then have $rac{1}{P [\Omega \times \{1\}]} \int_{\Omega \times \{1\}} Y_{1} P (d (\omega, \delta)) = \frac{1}{P [\Omega \times \{1\}]} \int_{\Omega} \left[\int_{\Omega} Y_{1} v_{\omega} (d\delta) \right] \mu (d\omega)$ by 18.20.c of Billingsley (1995). Because Y_{1} is only a function of ω, and by D1, this becomes $\frac{1}{P [\Omega \times \{1\}]} \int_{\Omega} Y_{1} \mu (d\omega)$ which is equal to $\int_{\Omega} Y_{1} \mu (d\omega) = E_{\mu} [Y_{1}]$; a similar argument shows that $\alpha (0) = E_{\mu} [Y_{0}]$. c) By A4, for every $x_{0} \in \mathbb{R}$, $F \equiv [\omega : X (\omega) \leq x_{0}]$ is in \mathcal{F}, and thus c) follows from a).

Proposition 2 If Conditions A1-A5, B2, C1, and D2 hold, then:

a) $\forall F \in \mathcal{F}$, $P [F \times \Delta | V = v]$ is continuous in v at $v = 0$

b) $E_{P} [Y | V = 0] - \lim_{v \to 0^{+}} E_{P} [Y | V = -v] = E_{P} [Y_{1} - Y_{0} | V = 0] = E_{\mu} \left[\frac{f_{\omega} (0)}{f (0)} (Y_{1} - Y_{0}) \right] \equiv ATE^{*}$

c) $\forall x_{0} \in \mathbb{R}, P [X \leq x_{0} | V = v]$ is continuous in v at $v = 0$

Proof. a) Fix $F \in \mathcal{F}$, and consider the function $\alpha : \Omega \times \Delta \to \mathbb{R}$, $\alpha (z, \delta) \equiv \frac{f_{\omega} f_{\omega} (\delta) \mu (d\omega)}{f (\delta)}$. It suffices to show 1) that $\alpha (z, \delta)$ is a version of the conditional probability of $F \times \Delta$ given \mathcal{G}, and 2) that $\alpha (z, \delta)$ is continuous in δ on \mathbb{R}. First, for each $\Omega \times A$ we have – by 18.20.c and 18.20.d of Billingsley
(1995) – \(\int_{\Omega \times A} \alpha (z, \delta) P (d (z, \delta)) = \int_A \frac{\int f \cdot f_0 (\delta) \mu (d \omega)}{f (\delta)} v (d \delta) \), where \(v \) is a probability measure defined by \(v (B) = \int_{\Omega} v_\omega (B) \mu (d \omega) \), for all \(B \in \mathcal{D} \). \(v \) has density \(f \) with respect to Lebesgue measure because for all \(B \in \mathcal{D} \), \(\int_B f (\delta) \, d \delta = \int_B [\int f_\omega (\delta) \mu (d \omega)] \, d \delta = \int_{\Omega} [\int_B f_\omega (\delta) \, d \delta] \mu (d \omega) = \int_{\Omega} v_\omega (B) \mu (d \omega) \), by Fubini’s theorem, and because \(f_\omega (\delta) \) is a density of \(v_\omega \). Thus, by theorem 16.11 of Billingsley (1995),
\(\int_A \frac{\int f \cdot f_0 (\delta) \mu (d \omega)}{f (\delta)} v (d \delta) = \int_A [\int f \cdot f_\omega (\delta) \mu (d \omega)] \, d \delta = \int \int_{\Omega} f \cdot f_\omega (\delta) \, d \delta \mu (d \omega) \), by Fubini’s theorem. This equals \(\int f \cdot v_\omega (A) \mu (d \omega) = P [F \times A] \), because \(f_\omega \) is a density and by 18.20.c of Billingsley (1995).

Second, to show continuity of \(\alpha (z, \delta) \), it suffices to show that for any \(F \in \mathcal{F} \) and any sequence \(\delta_n \to 0 \), \(\int f \cdot f_\omega (\delta_n) \mu (d \omega) \to \int f \cdot f_\omega (0) \mu (d \omega) \). This follows from dominated convergence, noting that \(f_\omega (\delta_n) \leq g_\omega \), if \(g_\omega \equiv \sup_n f_\omega (\delta_n) \), which is finite for each \(\omega \), because \(f_\omega (\delta_n) \) converges to \(f_\omega (0) \), by D2.

b) Consider the function \(\beta : \Omega \times \Delta \to \mathbb{R} \), \(\beta (z, \delta) = \int_{\Omega} Y \frac{f_\omega (\delta)}{f (\delta)} \mu (d \omega) \). It suffices to show that

1) \(\beta (z, \delta) \) is a version of the conditional expectation of \(Y \) given \(\mathcal{G} \), and 2) \(\beta (z, 0) = E_P [Y_1 | V = 0] = E_\mu \left[\frac{f_\omega (\delta)}{f (\delta)} Y_1 \right] \) and \(\lim_{\delta \to 0^+} \beta (z, -\epsilon) = E_P [Y_0 | V = 0] = E_\mu \left[\frac{f_\omega (\delta)}{f (\delta)} Y_0 \right] \). First, for all \(\Omega \times A \in \mathcal{G} \), we have

\(\int_{\Omega \times A} \beta (z, \delta) P (d (z, \delta)) = \int_A \int_{\Omega} Y \frac{f_\omega (\delta)}{f (\delta)} \mu (d \omega) \, d \delta \) by 18.20.c and 18.20.d of Billingsley (1995). This is equal to \(\int_{\Omega} \int_A Y \frac{f_\omega (\delta)}{f (\delta)} v (d \delta) \mu (d \omega) = \int_{\Omega} \int_A Y f_\omega (\delta) \, d \delta \mu (d \omega) \) because \(v \) has density \(f \) (see above). This is equal to \(\int_{\Omega} \int_A Y v_\omega (d \delta) \mu (d \omega) = \int_{\Omega \times A} Y P (d (\omega, \delta)) \), because \(v_\omega \) has density \(f_\omega \), and by 18.20.c of Billingsley (1995). Second, let \(\delta = 0 \). \(\int \frac{f_\omega (0)}{f (0)} \mu (d \omega) = \int \frac{f_\omega (0)}{f (0)} \mu (d \omega) = E_P [Y_1 | V = 0] \), by the definition of \(Y \), and the same argument above. Also, \(\int Y_1 \frac{f_\omega (0)}{f (0)} \mu (d \omega) = E_\mu \left[\frac{f_\omega (0)}{f (0)} Y_1 \right] \). Finally, let \(\delta_n < 0 \), \(\delta_n \to 0 \). \(\frac{f_\omega (\delta_n)}{f (\delta_n)} \to \frac{f_\omega (0)}{f (0)} \), by D2. Need to show \(\lim_n \int Y_0 \frac{f_\omega (\delta_n)}{f (\delta_n)} \mu (d \omega) = \int Y_0 \frac{f_\omega (0)}{f (0)} \mu (d \omega) \). This follows from dominated convergence with \(|Y_0 \frac{f_\omega (\delta_n)}{f (\delta_n)}| \) dominated by \(|Y_0 \frac{g_\omega}{f (\delta_n)}| \) (same \(g_\omega \) as above). By the same argument as above, \(\int Y_0 \frac{f_\omega (0)}{f (0)} \mu (d \omega) = E_P [Y_0 | V = 0] = E_\mu \left[\frac{f_\omega (0)}{f (0)} Y_0 \right] \).

to A4, for every \(x_0 \in \mathbb{R} \), \(F \equiv [\omega : X (\omega) \leq x_0] \) is in \(\mathcal{F} \), and thus c) follows from a).

Proposition 3

If Conditions A1-A5, B2, C2, and D2 hold, then:

a) and c) of Proposition 2 are true, and
b) \(E_P [Y|V = 0] - \lim_{\varepsilon \to 0^+} E_P [Y|V = -\varepsilon] = E_\mu \left[\frac{f_\omega(0)}{f(0)} (Y^+ - Y^-) \right] \equiv ATE^{**} \)

Proof. For a) and c), see the proof to Proposition 2. b) First, following the argument the proof to Proposition 2, \(\beta(z, \delta) \) is a version of the conditional expectation of \(Y \) given \(G \). Second, let \(\delta = 0 \).

\[
\int \Omega Y \frac{f_\omega(0)}{f(0)} \mu (d\omega) = \int \Omega Y^+ \frac{f_\omega(0)}{f(0)} \mu (d\omega) = E_\mu \left[\frac{f_\omega(0)}{f(0)} Y^+ \right].
\]

Finally, let \(\delta_n < 0, \delta_n \to 0 \). \(\frac{f_\omega(\delta_n)}{f(\delta_n)} \to \frac{f_\omega(0)}{f(0)} \), by D2. Need to show \(\lim_n \int \Omega Y \frac{f_\omega(\delta_n)}{f(\delta_n)} \mu (d\omega) = \int \Omega Y - \frac{f_\omega(0)}{f(0)} \mu (d\omega) \). This follows from dominated convergence with \(|Y \frac{f_\omega(\delta_n)}{f(\delta_n)}| \) dominated by \(|h_\omega \frac{g_\omega}{\inf y(\omega, \delta_n)}| \) (same \(g_\omega \) as above) where \(h_\omega \equiv \sup_n |y(\omega, \delta_n)| \), which is finite for each \(\omega \), because \(y(\omega, \delta_n) \to Y^- \), by C2. It follows that \(\int \Omega Y^- \frac{f_\omega(0)}{f(0)} \mu (d\omega) = E_\mu \left[\frac{f_\omega(0)}{f(0)} Y^- \right] \).