COST-MINIMIZATION

$$C(w, r, Q) = \min \{ w L + r K \mid F(K, L) \ge Q \}$$

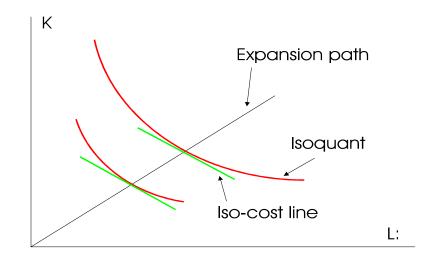
FONCs

$$w = \lambda \partial Q/\partial L, \quad r = \lambda \partial Q/\partial K$$

Interpretation: $\lambda = \text{marginal cost}$

$$MRTS_{KL} = -\left. \frac{dK}{dL} \right|_{Q \text{ const.}} = \frac{\partial Q/\partial L}{\partial Q/\partial K} = \frac{w}{r}$$

Expansion path: Increase Q holding (w, r) fixed:



Production function homothetic if every expansion path is a ray through origin If F is homogeneous (of any degree a): $F(sK,sL) = s^a \ F(K,L), \ \text{then it is homothetic}$ Converse not true

PROPERTIES OF COST FUNCTION

Vary Q holding (w, r) fixed – (ECO 102 material)

Fixed cost: C(0) = 0, but as $Q \downarrow 0$, $\lim C(Q) > 0$

Sunk cost: C(0) > 0

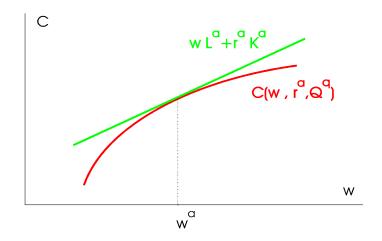
AC(Q) = C(Q)/Q, MC(Q) = C'(Q)

Returns to scale \uparrow at margin: $AC \downarrow$, MC < AC returns to scale \downarrow at margin: $AC \uparrow$; MC > AC If rets to scale first \uparrow , then \downarrow , U-shaped cost curves

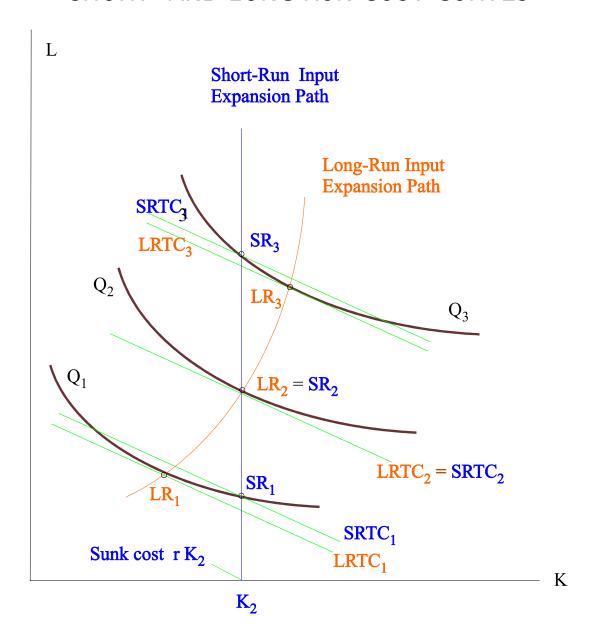
Vary (w,r) holding Q constant – (new material) Properties similar to consumer's expenditure function

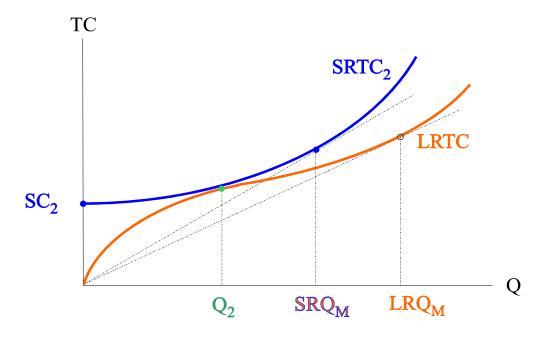
- (1) Homogeneous degree 1. (2) Concave, and
- (3) Hotelling's (Shepherd's) Lemma, cost-minimizing input choices are given by

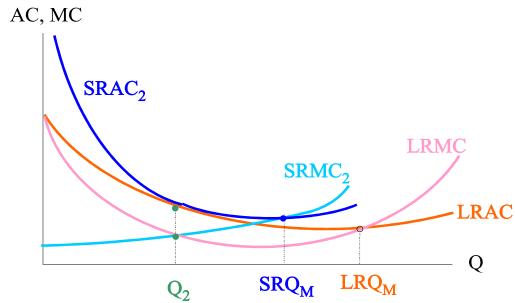
$$L^* = \partial C/\partial w, \quad K^* = \partial C/\partial r$$



SHORT- AND LONG-RUN COST CURVES







Q = quantity, TC = total cost, AC = average cost, MC = marginal cost LR = long run, SR = short run, SC = sunk cost Subscript 2 denotes that short run in which K is optimal to produce Q_2 Subscript M stands for the AC-minimizing quantity $SRQ_M > Q_2$; even in SR, there may be some scale economies beyond Q_2