GAME THEORY CONCEPTS

Players $\{1,2,\ldots n\}$ Strategies s_1 , s_2 , ... s_n Payoff functions $\Pi_1(s_1,s_2,\ldots s_n)$, $\Pi_2(s_1,s_2,\ldots s_n)$, ...

Simultaneous moves: Nash equilibrium

Definition 1 – Each chooses own best strategy given the others' strategy.

Two players: (s_1^*, s_2^*) is NE if for any other s_1 , s_2

$$\Pi_1(s_1^*, s_2^*) \ge \Pi_1(s_1, s_2^*), \ \Pi_2(s_1^*, s_2^*) \ge \Pi_2(s_1^*, s_2)$$

"Best responses" – given s_2 , $s_1=BR_1(s_2)$ maxes Π_1 . Nash equilibrium is intersection of best responses. But what does "response" mean when moves simultaneous? So

Definition 2 – Each chooses own best strategy given his belief about others' strategy; AND these beliefs are correct.

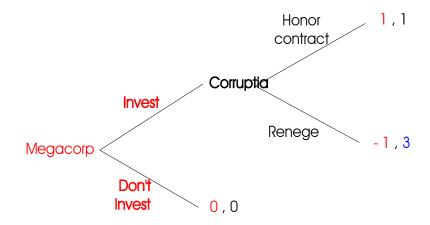
Sequential moves: Backward induction or rollback reasoning, leading to subgame perfect equilibrium:

For simple two-player, two-stage game, this means For any s_1 , response $R_2(s_1)$ maxes $\Pi_2(s_1,s_2)$ s_1 maxes $\Pi_1(s_1,R_2(s_1))$

Example of simultaneous-move game

		Column		
		Left	Middle	Right
Row	Тор	3 1	2 3	10 2
	High	4 5	3 0	6 4
	Low	2 2	5 4	12) 3
	Bottom	5 6	4 5	9 7

Example of sequential-move game



Our economic application will have continuously variable strategies (price etc.)

QUANTITY-SETTING (COURNOT) DUOPOLY

$$\Pi_1(x_1, x_2) = (p_1 - c_1) x_1 = [(a_1 - c_1) - b_1 x_1 - k x_2] x_1$$

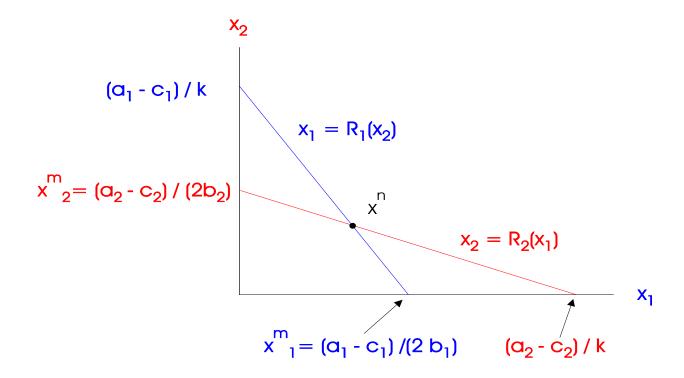
Firm 1's best response

$$(a_1 - c_1) - 2b_1 x_1 - k x_2 = 0$$

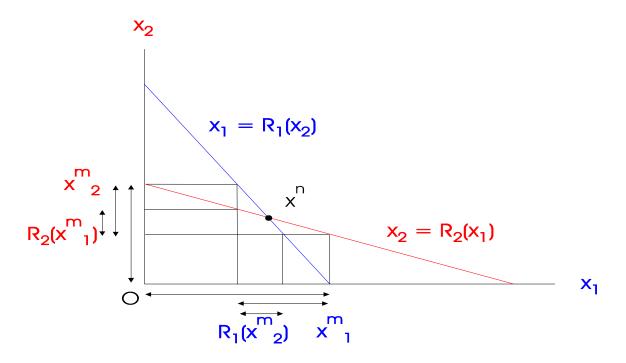
Similarly firm 2's. Solve jointly for Cournot-Nash eqm:

$$x_1^n = \left[2 b_2 (a_1 - c_1) - k (a_2 - c_2) \right] / (4 b_1 b_2 - k^2)$$

 $x_2^n = \left[2 b_1 (a_2 - c_2) - k (a_1 - c_1) \right] / (4 b_1 b_2 - k^2)$

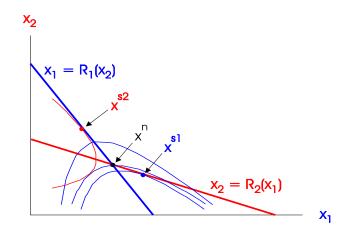


STABILITY - RATIONALIZABILITY



STACKELBERG LEADERSHIP

Sequential: firm 1 chooses x_1 ; then firm 2 chooses x_2



COURNOT OLIGOPOLY

Homog. product, n identical firms

Constant marg. cost c, fixed cost f for each Linear industry demand : $p=a-b\,X$ Firm i profit:

$$\Pi_i = [a - b(x_1 + x_2 + \ldots + x_n)] x_i - c x_i - f$$

FONC: $a - b(x_1 + x_2 + ... + x_n) - c - bx_i = 0$

Adding FONCs : n [a - bX - c] - bX = 0. Solution for eqm.

$$X = \frac{n}{n+1} \frac{a-c}{b}, \qquad x = \frac{1}{n+1} \frac{a-c}{b}, \qquad p = \frac{a+nc}{n+1}$$

As $n \uparrow \infty$, $p \downarrow c$ (competitive limit).

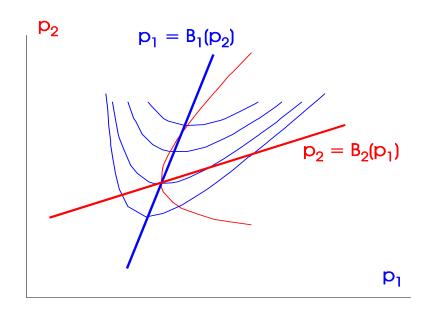
But max n compatible with $\Pi > 0$

$$\overline{n} \equiv \frac{a-c}{\sqrt{b\,f}} - 1$$

PRICE-SETTING (BERTRAND) DUOPOLY

Profit
$$\Pi_1(p_1, p_2) = (p_1 - c_1) (\alpha_1 - \beta_1 p_1 + \kappa p_2)$$

Best response $p_1 = [(\alpha_1 + \beta_1 c_1) + \kappa p_2] / (2 \beta_1)$



COMPARISONS

For substitute products, ranked by Prices \uparrow , Quantities \downarrow , Firms' profits \uparrow , Cons. surplus and Social efficiency \downarrow

- 1. Marginal cost pricing
- 2. Bertrand
- 3. Cournot
- 4. Cartel (Joint profit max)