REPEATED INTERACTION AND TACIT COLLUSION

Symmetric duopoly; each firm's profits per period if:

Non-cooperative (Nash) equilibrium – $\pi(N)$

Collusive joint profit maximization – $\pi(J)$

One firm plays collusive while other plays best response:

Cheater –
$$\pi(C)$$
; Sucker – $\pi(S)$
 $\pi(C) > \pi(J) > \pi(N) > \pi(S)$

Prisoners' Dilemma:

		Firm 2	
		cooperate	not cooperate
Firm	cooperate	$\pi(J), \pi(J)$	$\pi(S), \pi(C)$
1	not cooperate	$\pi(C), \pi(S)$	$\pi(N), \pi(N)$

Dominant strategies: Then in Nash equilibrium each gets $\pi(N)$; worse for both than $\pi(C)$ How to cooperate? Promises not automatically credible Ongoing relationship – risk of future collapse? Fixed finite no. of repetitions don't work in theory But works in practice except for last few periods

Infinite and indefinite repetition:

Infinite repetition. Grim trigger strategy:

Attempt to cooperate collapses if any cheating occurs "Play Cooperative if no history of cheating Else play Non-cooperative"

Will cooperative play be an equilibrium?

Cheating (deviation of strategy) unprofitable if

$$\pi(J) \left[1 + (1+r)^{-1} + (1+r)^{-2} + \ldots \right]$$
> $\pi(C) + \pi(N) \left[(1+r)^{-1} + (1+r)^{-2} + \ldots \right]$

(PDV of tacit collusion > PDV of deviation) or

$$r [\pi(C) - \pi(J)] < \pi(J) - \pi(N)$$

(interest on one-time gain < future per-period loss)

If industry growth rate g (negative if decline)

Game end probability z per period (indefinite rep)

Replace
$$(1+r)^{-1}$$
 by $(1-z)(1+g)(1+r)^{-1}$ or r by $r+z-g$

Some factors conducive to tacit collusion:

- (1) Small and stable group of firms
- (2) Stable or growing industry

Cartelization (tacit or explicit) usually hurts consumers antitrust authorities should seek to deter it.

ENTRY DETERRENCE

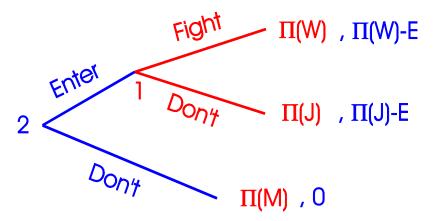
Firm 1 incumbent; its entry costs are sunk (bygones) Firm 2 contemplates entry; cost E

If entry accommodated, each gets $\pi(J)$; if price war, $\pi(W)$ Assume $\pi(J)>E>\pi(W)$

Simultaneous-move game:

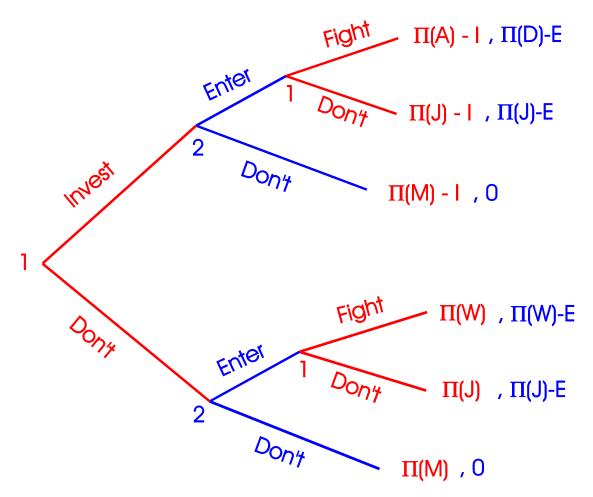
		Firm 2		
		Enter	Don't Enter	
Firm	Fight	$\pi(W), \pi(W) - E$	$\pi(M), 0$	
1	Accommodate	$\pi(J), \pi(J) - E$	$\pi(M), 0$	

Two Nash equil – (1) (Accomm,Enter), (2) (Fight,Don't) In (2), firm 2's entry is deterred by firm 1's threat to fight. But is this threat credible? Test of that is Sequential-move game:



Subgame-perfect equilibrium by backward analysis – Firm 1 accommodates if entry, so Firm 2 enters

Firm 1 would like to make threat credible Costly action (investment) I that would create asymmetric price-war game: profits $\pi(A)$ to firm 1; $\pi(D)$ to firm 2 New game tree



Fight credible if $\pi(A) > \pi(J)$ This keeps firm 2 out if $\pi(D) < E$ Entry-deterrence by investment strategy is optimal for firm 1 if $\pi(M) - I > \pi(J)$