UNCERTAINTY

Outcomes of actions not perfectly predictable can differ according to circumstances or "scenarios" Scenarios or "state of the world": each a complete description of all economically relevant circumstances May be a finite list $i=1, 2, \ldots n$, or continuum e.g. [0,1] Once one scenario transpires, no further uncertainty

An "uncertain prospect" or "lottery" is a probability distribution of outcomes (wealth, income etc.) over all possible scenarios:

Probabilities (objective or subjective) π_i , ≥ 0 , sum to 1 Can depend on action chosen – safe or gamble etc. Certainty: only one of the π_i equals 1, all others 0 For any random variable x, with possible values x_i

Expected Value:
$$\mathsf{E}[x] \equiv \overline{x} = \sum_{i=1}^n \, \pi_i \, x_i$$

Variance: $\mathsf{V}[x] \equiv \mathsf{E}[\, (x - \overline{x})^2 \,] = \sum_{i=1}^n \, \pi_i \, \, (x_i - \overline{x})^2$

Risk-neutrality: Concern for $\mathsf{E}[W]$ only. More generally, trade-off between $\mathsf{E}[W]$ and $\mathsf{V}[W]$ or some other measure or dispersion

EXPECTED UTILITY

von Neumann - Morgenstern utility function U(W) Preference over uncertain prospects: Expected utility

$$EU[W] = \sum_{i=1}^{n} \pi_i \ U(W_i)$$

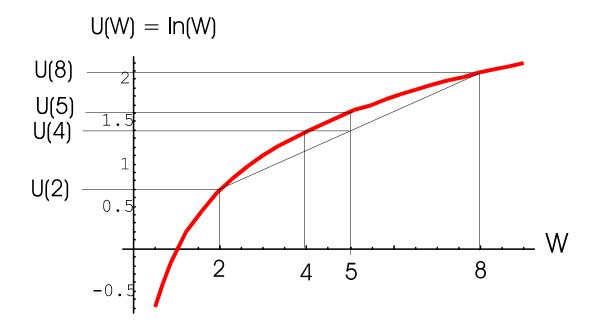
If U is concave, this reflects risk-aversion: example

$$\frac{1}{2} U(W_1) + \frac{1}{2} U(W_2) < U(\frac{1}{2} \{ W_1 + W_2 \})$$

e.g.
$$5 = \frac{1}{2}(2+8)$$
 but $U(W) = \ln(W)$ gives

$$U(5) > \frac{1}{2}U(2) + \frac{1}{2}U(8) = U(4)$$

indifference between sure \$4 and 50:50 chance of \$2 or \$8



Expected utility approach: from set of available actions, choose the one that yields highest expected utility When is this a valid representation of preferences? Usual assumptions (completene, transitive, continuous), PLUS Independence: Preference between lotteries X, Y same as between $(\pi:X,(1-\pi):Z)$ and $(\pi:Y,(1-\pi):Z)$ This can be problematic

If change vN-N utility function U(W) to increasing linear transform $\widetilde{U}(W)=a+b\,U(W)$

$$E[\widetilde{U}(W)] = \sum_{i} \pi_{i} \widetilde{U}(W_{i}) = \sum_{i} \pi_{i} [a + b U(W_{i})]$$

$$= a + b \sum_{i} \pi_{i} U(W_{i}) = a + b E[U(W)]$$

So max $\mathsf{E}[U(W)]$ same as max $\mathsf{E}[\widetilde{U}(W)]$.

But if monotone transform *nonlinear*: $\widetilde{U}(W) = \phi(U(W))$

$$\mathsf{E}[\widetilde{U}(W)] = \sum_{i} \pi_{i} \, \widetilde{U}(W_{i}) = \sum_{i} \pi_{i} \, \phi(U(W_{i}))$$

$$\neq \phi\left(\sum_{i} \pi_{i} \, U(W_{i})\right) = \phi(\mathsf{E}[U(W)])$$

Therefore for expected utility approach, the underlying vN-M utility function must be cardinal

QUANTIFYING RISK-AVERSION

Initial wealth W_0 , lottery 50:50 chances of $W_0 \pm x$ (so variance $v=x^2$). Find y such that

$$U(W_0 - y) = \frac{1}{2} U(W_0 + x) + \frac{1}{2} U(W_0 - x)$$

Taylor series expansion: $U(W_0) - y U'(W_0)$

$$= \frac{1}{2} \left[U(W_0) + x U'(W_0) + \frac{1}{2} x^2 U''(W_0) \right] + \frac{1}{2} \left[U(W_0) - x U'(W_0) + \frac{1}{2} x^2 U''(W_0) \right] = U(W_0) + \frac{1}{2} x^2 U''(W_0)$$

Therefore mean-variance tradeoff for small risk around W_0 :

$$\frac{y}{x^2} = \frac{1}{2} \frac{-U''(W_0)}{U'(W_0)} = \frac{1}{2} A(W_0)$$

where $A(W_0)$ is called the absolute risk aversion.

For proportional risks W_0 $(1 \pm x)$:

$$U(W_0(1-y)) = \frac{1}{2} U(W_0(1+x)) + \frac{1}{2} U(W_0(1-x))$$
$$\frac{y}{x^2} = \frac{1}{2} \frac{-W_0 U''(W_0)}{U'(W_0)} = \frac{1}{2} R(W_0)$$

where $R(W_0)$ is called the *relative risk aversion*.

Constant absolute risk aversion (used in finance):

$$U(W) = -\exp(-A W)$$

Constant relative risk aversion:

$$U(W) = \begin{cases} W^{1-R}/(1-R) & \text{if } R \neq 1\\ \ln(W) & \text{if } R = 1 \end{cases}$$

For this case with $R \neq 1$ expected utility has CES form:

$$EU[W] = \frac{1}{1-R} \sum_{i} \pi_{i} (W_{i})^{1-R}$$

If R = 1 it has Cobb-Douglas form

$$EU[W] = \sum_{i} \pi_{i} \ln(W_{i})$$

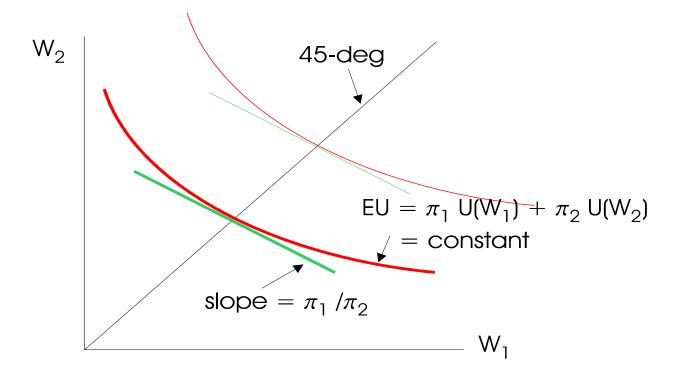
Example: Initial wealth	R	$W_0 y$
•	0.5	2,500
$W_0 = \$1$ million,	1	5,000
Risk: 50:50 of \$100,000	2	10,000
so proportional $x = 0.1$	3	14,900
Table of $W_0 y$		
5 9	10	44,200
you would pay to avoid risk :	20	67,600

STATE-PREFERENCE APPROACH

Two scenarios (for geometric illustration), $\pi_1 + \pi_2 = 1$

$$EU[W] = \pi_1 \ U(W_1) + \pi_2 \ U(W_2)$$

Contours of expected utility:



$$MRS_{21} = -\left.\frac{dW_2}{dW_1}\right|_{EU-\text{const}} = \frac{\partial EU/\partial W_1}{\partial EU/\partial W_2} = \frac{\pi_1}{\pi_2} \frac{U'(W_1)}{U'(W_2)}$$

Diminishing MRS \equiv Risk-aversion (U'' < 0)

Along 45-degree line, $W_1=W_2$, so no risk and $MRS_{21}=\pi_1\,/\,\pi_2$