COST DEPENDS ON INPUT PRICES (Not directly in P-R)

Fix the quantity Q_1 of output to be produced
Suppose at input prices r_1 and w_1, the cost-minimizing choices of inputs are K_1 and L_1
\[\text{cost } C_1 = r_1 K_1 + w_1 L_1 \]
Now the wage rate changes to w_2; no change in Q_1, r_1. What happens to cost?
Could go on using K_1 and L_1; cost would be $r_1 K_1 + w_2 L_1$ (like Laspeyres index)
But if there is some substitution possibility,
\[\text{can lower cost by changing input mix} \]
Figure shows optimal cost as w is changed
Everywhere below line $r_1 K_1 + w L_1$
Coincides at one point $w = w_1$
Therefore line is tangent to curve at this point: Slope of line = slope of curve
\[L_1 = \frac{\partial C}{\partial w} \text{ at } w = w_1 \]

Overall result of doing this for all possible Q, w, r:
Firm’s cost function $C(Q, w, r)$
Firm’s “conditional (for given output level Q) derived demand function for labor”
\[\text{can be found simply by differentiating its cost function with respect to the price of labor } w \]
Similarly for capital. P-R do this differently on pp. 516-8.
Cobb-Douglas Example (P-R pp. 256-9)

Firm chooses \(L, K \) to minimize cost \(w L + r K \) subject to \(A K^\alpha L^\beta = Q \)

We did this by using tangency condition. For reinforcement let us now use Lagrange’s Method

Lagrangian \(\mathcal{L} = w L + r K - \lambda [A K^\alpha L^\beta - Q] \); \(\lambda \) is the Lagrange multiplier to be determined

Conditions \(\frac{\partial \mathcal{L}}{\partial L} = w - \lambda A \beta K^\alpha L^{\beta - 1} = 0 \), \(\frac{\partial \mathcal{L}}{\partial K} = r - \lambda A \alpha K^{\alpha - 1} L^\beta = 0 \)

Write these as \(w = \lambda \beta Q / L \) \(r = \lambda \alpha Q / K \)
\(L = \lambda \beta Q / w \) \(K = \lambda \alpha Q / r \)

Therefore
\[
Q = A [\lambda \alpha Q / r]^\alpha [\lambda \beta Q / w]^\beta = \text{constant} [\lambda Q]^\alpha + \beta w^\beta r^{-\alpha}
\]

Solve this for \(\lambda \), then substitute into the expressions for \(L \) and \(K \), and finally get the cost

Algebra is messy, but result:
\[
L = \text{const} \left(\frac{r}{w} \right)^{\alpha/(\alpha + \beta)} Q^{\beta/(\alpha + \beta)}, \quad K = \text{const} \left(\frac{w}{r} \right)^{\beta/(\alpha + \beta)} Q^{\alpha/(\alpha + \beta)}, \quad C = \text{const} w^{\beta/(\alpha + \beta)} r^{\alpha/(\alpha + \beta)} Q^{1/(\alpha + \beta)}
\]

where all the constants are different and messy expressions involving \(\alpha, \beta \).

Elasticity of \(L, K \) and \(C \) with respect to \(Q \) is \(1/(\alpha + \beta) \)

So, for example, if \(\alpha + \beta > 1 \), then inputs and costs increase slower than \(Q \)

Increasing returns to scale, decreasing AC curve. Exercise: check that \(MC < AC \)

If good at math, use full formulas in P-R to check that \(L = \partial C / \partial w, K = \partial C / \partial r \)

L, K depend only on relative prices. As \(w/r \) increases, L falls and K increases: substitution
EMPIRICAL EXAMPLES OF COST FUNCTIONS

AGGREGATE U.S. MANUFACTURING (E. Berndt, Practice of Econometrics, 1991, pp. 469-76)

Four inputs: capital, labor, energy, and non-energy raw materials

\[
\ln(C) = \ln(\alpha_0) + \sum_{i=1}^{4} \alpha_i \ln(P_i) + \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \gamma_{ij} \ln(P_i) \ln(P_j) + \alpha_y \ln(Y) + \frac{1}{2} \gamma_{yy} [\ln(Y)]^2 + \sum_{i=1}^{4} \gamma_{iy} \ln(P_i) \ln(Y)
\]

The parameters \(\alpha_0, \ldots, \gamma_{iy}\) are to be estimated by regression analysis.

Economic theory places restrictions, e.g. \(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 1\), because if all input prices go up in proportion, total cost must rise by the same factor.

Then interpretation: input demand functions, how each depends on own and other prices, returns to scale, etc. Berndt reports elasticities of demand:

<table>
<thead>
<tr>
<th>Elasticity of demand for</th>
<th>With respect to the price of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital</td>
</tr>
<tr>
<td>Capital</td>
<td>-0.34</td>
</tr>
<tr>
<td>Labor</td>
<td>0.05</td>
</tr>
<tr>
<td>Energy</td>
<td>-0.17</td>
</tr>
<tr>
<td>Materials</td>
<td>0.02</td>
</tr>
</tbody>
</table>

So capital and energy are complements, and other pairs of inputs are substitutes.

Unfortunately Berndt does not report on returns to scale.
CREDIT UNIONS (Stephen Moeller, Princeton senior thesis 1999)

These are saving and borrowing cooperatives at workplaces, community associations etc. Must choose measure of quantity Q. Moeller discusses alternatives: numbers of loans outstanding, or loans granted in a year, or savings accounts, dollar volume of loans outstanding ... He chooses the first of these.

\[
\ln(C) = a + b_1 \ln(Q) + b_2 [\ln(Q)]^2 + \sum_i c_i \ln(W_i) + \sum_j d_j F_j
\]

where \(W_i\) are input prices, and \(F_j\) are other structural variables. His estimates are
\[b_1 = 0.6537, \text{ with standard error } 0.0231\]
\[b_2 = 0.0204, \text{ with standard error } 0.0015\]

How to interpret this? \(AC = C/Q\), so \(\ln(AC) = \ln(C) - \ln(Q)\)

\[
\ln(AC) = a - (1 - b_1) \ln(Q) + b_2 [\ln(Q)]^2 + \sum_i c_i \ln(W_i) + \sum_j d_j F_j
\]

So as \(\ln(Q)\) increases starting from very small values (near \(\ln(Q) = 0\) or \(Q = 1\)),
- \(AC\) decreases at first (negative coefficient on linear term) and
- \(AC\) eventually increases (positive coefficient on quadratic term

Economic intuition: [1] Large \(Q\) enables better risk-pooling, but

[2] Eventually \(Q\) becomes so large that moral hazard cannot be controlled

Where is \(AC\) minimized? Choosing \(Q\) is equivalent to choosing \(\ln(Q)\), so
- take derivative of right hand side with respect to \(\ln(Q)\) and set it equal to zero

 \[- (1-b_1) + 2 b_2 \ln(Q) = 0, \text{ or } \ln(Q) = (1-b_1)/(2 b_2) = 8.48, \text{ or } Q = 4764\]

In reality, 85% of U.S. credit unions were to the left of this
- Median \(Q\) was 705; at this point \(AC\) was 7.8% higher than the minimum achievable