COSTS AND SUPPLY

GENERAL PICTURE OF ONE FIRM’S COST CURVES

Reminder of notation:
FC = fixed cost (does not vary as output Q varies but stays > 0)
FSC = fixed and sunk cost (unavoidable even if Q = 0)
FAC = fixed but avoidable (not sunk) cost (can be avoided if Q = 0)
So FC = FSC + FAC

TVC = total variable cost, avoidable by definition
TAC = total avoidable (also “economic”) cost = FAC + TVC

TC = \[\text{FC} + \text{TVC}\] (Total splits into fixed and variable)
\[= \text{FSC} + \text{FAC} + \text{TVC}\]
\[= \text{FSC} + \text{TAC}\]

AC = TC / Q = average cost
AVC = TVC / Q = average variable cost
AAC = TAC / Q = average avoidable cost
(AAC is P-R’s “average economic cost” on p. 270)

AC = AVC + FC / Q
AC = AAC + FSC / Q
AAC = (TVC + FAC) / Q = AVC + FAC / Q

Marginal cost

MC = d(TC)/dQ
\[= d(\text{FC}+\text{TVC})/dQ = 0 + d(\text{TVC})/dQ = d(\text{TVC})/dQ\]
\[= d(\text{FSC}+\text{TAC})/dQ = 0 + d(\text{TAC})/dQ = d(\text{TAC})/dQ\]

MC curve passes through the min of all of AC, AAC, AVC
SHORT-RUN SUPPLY CURVE OF A PRICE-TAKING FIRM
P-R pp. 268-70

Q chosen to maximize profit \(\pi(Q) = P \cdot Q - TC(Q) \)
First-order condition: \(d\pi/dQ = P - dTC/dQ = 0 \), or \(P = MC \)
Second-order condition: \(d^2\pi/dQ^2 = -d^2TC/dQ^2 = -dMC/dQ < 0 \)
so MC must be increasing at this point
Total condition: \(\pi(Q) > \pi(0) = -FSC \), so
\(PQ > TC - FSC = TAC \), or \(P > AAC \)

See how these apply in the figure:

1. If \(P < MC_{\text{min}} \), cannot find \(Q \) satisfying first-order cond. \(P = MC \)
 \(P < MC \) everywhere, so optimum \(Q = 0 \) (corner solution)

2. If \(MC_{\text{min}} < P < AAC_{\text{min}} \), can find \(Q \) such that \(P = MC \),
 but avoidable costs not covered, so total condition fails.
 \(P = MC \) gives only local optimum; True global optimum is \(Q = 0 \)

3. If \(AAC_{\text{min}} < P < AC_{\text{min}} \), can find \(Q \) such that \(P = MC \),
 firm is making an accounting loss,
 but avoidable (economic) costs are covered.
 True optimum is where \(P = MC \)

4. If \(AC_{\text{min}} < P \), can find \(Q \) such that \(P = MC \)
 firm covers accounting (and economic) costs
 “Regular” optimum where \(P = MC \)

Summing up:

Supply curve \(S \) coincides with MC when \(P > AAC_{\text{min}} \)
coincides with vertical axis when \(P < AAC_{\text{min}} \)
SOME SPECIAL CASES OF INTEREST: (P-R pp. 275-9)

1. Each firm has constant MC up to a “capacity limit”; producing more is not possible (is infinitely costly) for it.
 Suppose all fixed costs are sunk.
 Then the firm’s supply curve has the form shown here –
 If the industry has many such firms with different MC’s,
 Then industry supply will consist of steps
 This happens e.g. in mining, electricity production, ...
 where different MC’s correspond to different deposits or different technologies of production (see P-R pp. 271, 275).
 Then even in the long run, lower-cost firms have positive profits these are “economic rents” to their special scarce factors.

2. Free entry and exit (relevant for long run, with no sunk costs).
 If all firms have identical U-shaped AC curves then industry supply is horizontal line at \(P = AC_{\text{min}} \).
 This is a constant-cost industry (P-R pp. 288-9).
 (Actually succession of discrete multiples of each firm’s AC-minimizing quantity, but in practice a continuous line).
3. Cost-spillovers across firms in one industry (P-R 289-90)

- Negative – greater industry output raises each firm’s cost curves
e.g. because price of scarce input used by all rises
 Result can be an increasing-cost industry

- Positive – greater industry output lowers each firm’s cost curves
e.g. because of increasing returns in upstream supplier,
or learning effects spread across firms
 Result can be a decreasing-cost industry

Example – Firm’s output Q, industry output Q_{ind}

$TC = 1 + k Q_{\text{ind}} Q + Q^2$, $AC = Q^{-1} + k Q_{\text{ind}} + Q$, $MC = k Q_{\text{ind}} + 2Q$

Given industry output Q_{ind}, each (small) firm’s Q minimizes its AC
when $d(AC)/dQ = -Q^{-2} + 1 = 0$, or $Q = 1$ and $AC_{\text{min}} = 2 + k Q_{\text{ind}}$
or equivalently, when $AC = MC$,

$Q^{-1} + k Q_{\text{ind}} + Q = k Q_{\text{ind}} + 2Q$, $Q^{-1} = Q$, or $Q = 1$

Figure shows case of decreasing cost, $k = -0.05$
and two points on the industry supply curve, with $Q_{\text{ind}} = 10$ and 20
DISCUSSION OF ASSUMPTIONS UNDERLYING THIS THEORY

1. Firms maximize profits (P-R p. 264)

 Agency problems between shareholders and managers:
 Managers want large empires etc. and sacrifice some profit
 Can be overcome in part by design of managerial incentives
 Will study some of this in second half
 Governments may force firms to take into account
 interests of other “stakeholders” in society –
 maintain employment, train workers, support local causes, ...
 This can be seen as constraints on profit-maximization
 or modification of objective function itself

2. Each firm is a price-taker (P-R pp. 262-4)

 Requires each firm to be small in relation to market
 Market is defined to contain closely homogeneous product,
 with large cross-elasticities of demand across firms
 But this may also depend on consumers finding out
 the best prices quickly at negligible search cost
 Each firm’s AC-minimizing quantity should be small
 relative to the size of the whole market
 This condition will not be met if production has
 significant economies of scale in each firm
 (External economies of scale across firms in the industry OK)
 Industries with substantial economies of scale in each firm
 usually become monopolies or oligopolies (1 or few large firms)
 But few firms do not automatically form a cartel to raise prices –
 they may instead compete fiercely
 Conversely, in mature industries with little entry or exit,
 even though several firms coexist,
 they may form implicit collusive arrangements
 Will look at many issues of imperfect competition in second half