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Abstract
One major task in molecular biology is to understand the dependency among genes to model gene regulatory net-
works. Pearson’s correlation is the most common method used to measure dependence between gene expression
signals, but it works well only when data are linearly associated. For other types of association, such as non-linear
or non-functional relationships, methods based on the concepts of rank correlation and information theory-based
measures are more adequate than the Pearson’s correlation, but are less used in applications, most probably because
of a lack of clear guidelines for their use. This work seeks to summarize the main methods (Pearson’s, Spearman’s
and Kendall’s correlations; distance correlation; Hoeffding’s Dmeasure; Heller^Heller^Gorfine measure; mutual in-
formation and maximal information coefficient) used to identify dependency between random variables, especially
gene expression data, and also to evaluate the strengths and limitations of each method. Systematic Monte Carlo
simulation analyses ranging from sample size, local dependence and linear/non-linear and also non-functional
relationships are shown. Moreover, comparisons in actual gene expression data are carried out. Finally, we provide
a suggestive list of methods that can be used for each type of data set.
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INTRODUCTION
In bioinformatics, the notion of dependence is cen-

tral to model gene regulatory networks. The func-

tional relationships and interactions among genes

and their products are usually inferred by using stat-

istical methods that identify dependence among

signals [1–4].

One well-known method to identify dependence

between gene expression signals is the Pearson’s cor-

relation. But Pearson’s correlation, although it is one

of the most ubiquitous concepts in modern molecu-

lar biology, is also one of the most misunderstood

concepts. Some of the confusion may arise from the

literary use of the word to cover any notion of de-

pendence. To a statistician, correlation is only one

particular measure of stochastic dependence among

many. It is the canonical measure in the world of

multivariate normal distributions, and more generally

for spherical and elliptical distributions. However,

empirical research in molecular biology shows that

the distributions of gene expression signals may

not belong in this class [4]. To identify associations

not limited to linear associations, but dependent in

a broad sense, several methods have been de-

veloped, most of them based on ranks or information

theory.

The main aim of this article is to clarify the essen-

tial mathematical ideas behind several methods

[Pearson’s correlation coefficient [5,6], Spearman’s

correlation coefficient [7], Kendall’s correlation

Suzana de Siqueira Santos obtained her BS in Computer Science in 2012 at the University of São Paulo. She is currently a master

course student in Computer Science at the same university.

DanielYasumasaTakahashi received his Ph.D. in Bioinformatics in 2009 at the University of São Paulo. He is currently a post-doc at

Princeton University.

Asuka Nakata received her Ph.D. in Biosciences in 2009. She is currently a post-doc at the University of Tokyo.

Andre¤ Fujita received his Ph.D. in Bioinformatics in 2007. He is currently Assistant Professor at the University of São Paulo.
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coefficient [8], distance correlation [9], Hoeffding’s

D measure [10], Heller–Heller–Gorfine (HHG)

measure [11], mutual information (MI) [12] and

maximal information coefficient (MIC) [13]] used

to identify dependence between random variables

that anyone wishing to model dependent phenom-

ena should know. Furthermore, we illustrate by

Monte Carlo simulations where we varied sample

size, local dependence and linear/non-linear and

also non-functional relationships, the strengths and

limitations concerning the different measures used

to identify dependent signals. Finally, we illustrate

the application of the methods in actual gene ex-

pression data with known dependence structure be-

tween the genes. Thus we hope to provide the

necessary elements for a better comprehension of

the methods and also the choice of a suitable

dependence test method, based on practical con-

straints and goals.

STATISTICAL INDEPENDENCE
BETWEEN TWORANDOM
VARIABLES
Statistical independence indicates that there is no re-

lation between two random variables. If the variables

are statistically independent, then the distribution of

one of them is the same no matter at which fixed

levels the other variable is considered, and observa-

tions for such variables will lead correspondingly to

nearly equal frequency distributions. On the other

hand, if there is dependence, then the levels of one

of the variables vary with changing levels of the

other. In other words, under independence, know-

ledge about one feature remains unaffected by infor-

mation provided about the other, whereas under

dependence, it follows which level of one variable

occurs as soon as the level of the other variable is

known.

Formally, two random variables X and Y with

cumulative distribution functions FX xð Þ and FY yð Þ,
and probability densities fX xð Þ and fY yð Þ, are inde-

pendent if and only if the combined random variable

X,Yð Þ has a joint cumulative distribution function

FX,Y x, yð Þ ¼ FX xð ÞFY yð Þ, or, equivalently, a joint

density fX,Y x, yð Þ ¼ fX xð ÞfY yð Þ. We say that two

random variables X and Y are dependent if they

are not independent. The problem then is how to

measure and detect dependence from the observa-

tion of the two random variables.

MEASURESOF DEPENDENCE
BETWEENRANDOMVARIABLES
Let x1, y1ð Þ, x2, y2ð Þ, . . . , xn, ynð Þ be a set of joint n
observations from two univariate random variables X
and Y.

The test of dependence between X and Y is

described as a hypothesis test as follows:

H0: X and Y are not dependent (null hypothesis).

H1: X and Y are dependent (alternative hypothesis).

In the next section, we will describe frequently used

methods to identify dependent data and also show by

simulations that some methods such as Pearson’s,

Spearman’s and Kendall’s correlations can only

detect linear or non-linear monotonic (strictly

increasing or strictly decreasing function, i.e. a func-

tion that preserves the given order) relationships,

whereas others such as distance correlation, HHG

measure, Hoeffding’s D measure and MI are able

to identify non-monotonic and non-functional rela-

tionships also. Furthermore, we will see that

although MIC is not mathematically proven to be

consistent against all general alternatives, it can detect

some non-monotonic relationships.

Pearson’s product-moment correlation
coefficient
The Pearson’s product-moment correlation or

simply Pearson’s correlation [5,6] is a measure of

linear dependence, as the slope obtained by the

linear regression of Y by X is Pearson’s correlation

multiplied by that ratio of standard deviations.

Let x ¼
Pn

i¼1
xi

n and y ¼
Pn

i¼1
yi

n be the means of X
and Y, respectively. Then, the Pearson’s correlation

coefficient rPearson is defined as follows:

rPearson X,Yð Þ ¼

Pn
i¼1 xi � xð Þ yi � yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 xi � xð Þ
2Pn

i¼1 yi � yð Þ
2

q
For joint normal distributions, Pearson’s correl-

ation coefficient under H0 follows a Student’s

t-distribution with n� 2 degrees of freedom. The

t statistic is as follows:

t ¼
rPearson X,Yð Þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Pearson X,Yð Þ

p
When the random variables are not jointly nor-

mally distributed, the Fisher’s transformation is used

to get an asymptotic normal distribution.
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In the case of perfect linear dependence, we have

rPearson X,Yð Þ ¼ �1. The Pearson correlation is þ1

in the case of a perfect positive (increasing) linear

relationship and �1 in the case of a perfect negative

(decreasing) linear relationship. In the case of linearly

independent random variables, rPearson X,Yð Þ ¼ 0,

and in the case of imperfect linear dependence,

�1 < rPearson X,Yð Þ < 1. These last two cases are

the ones for which misinterpretations of correlation

are possible because it is usually assumed that non-

correlated X and Y means independent variables,

whereas in fact, they may be associated in a non-

linear fashion that Pearson’s correlation coefficient

is not able to identify.

The R function for Pearson’s test is cor.test with

parameter method¼‘pearson’ (package stats). The

stats package can be downloaded from the R [14]

Web page (http://www.r-project.org).

Spearman’s rank correlation coefficient
Unlike the Pearson’s correlation coefficient,

Spearman’s rank correlation or simply Spearman’s

correlation [7] does not require assumptions of lin-

earity in the relationship between variables, nor

should the variables be measured at interval scales,

as it can be used for ordinal variables.

Let rSpearman be simply the application of Pearson’s

correlation in the data converted to ranks before

calculating the coefficient. Thus, Spearman’s rank

correlation can capture monotonic relationships,

i.e. if values of Y tend to increase (or decrease)

when values of X increase.

Another simpler procedure used to calculate

rSpearman is to convert the raw values of xi and yi
to ranks, and calculate the differences di between

the ranks of xi and yi and calculate the Spearman’s

rank correlation coefficient as:

rSpearman X,Yð Þ ¼ 1�
6
Pn

i¼1 d
2
i

n n2 � 1ð Þ

The Spearman’s correlation coefficient under

H0 can be asymptotically approximated by a

Student’s t-distribution with n� 2 degrees of

freedom:

t ¼
rSpearman

ffiffiffiffiffiffiffiffiffiffiffi
n� 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

Spearman

q
Similarly to Pearson’s correlation coefficient,

rSpearman assumes values between �1 and 1, where

Spearman’s correlation is þ1 in the case of a perfect

monotonically increasing relationship (for all x1 and

x2 such that x1 < x2, we have y1 < y2), and �1 in

the case of a perfect monotonically decreasing rela-

tionship (for all x1 and x2 such that x1 < x2, we have

y1 > y2). In the case of monotonically independent

random variables, rSpearman X,Yð Þ ¼ 0, and in the

case of imperfect monotonically dependence,

�1 < rSpearman X,Yð Þ < 1. Again, similarly to

Pearson’s correlation coefficient, rSpearman X,Yð Þ ¼ 0

does not mean that random variables X and Y are

independent, but only that they are monotonically

independent.

The R function for Spearman’s test is cor.test with

parameter method¼‘spearman’ (package stats). The

stats package can be downloaded from the R Web

page (http://www.r-project.org).

Kendall t rank correlation coefficient
The Kendall t rank correlation coefficient or simply

Kendall’s correlation [8] is an alternative method to

Spearman’s correlations, i.e. it also identifies mono-

tonic relationships.

Kendall’s correlation is defined as [8]:

tðX,YÞ ¼

number of concordant pairsð Þ

� number of discordant pairsð Þ

( )

0:5n n� 1ð Þ

where concordant means if the ranks for both elements

agree: that is, if both xi > xj and yi > yj or if both

xi < xj and yi < yj. They are said to be discordant, if

xi > xj and yi < yj or if xi < xj and yi > yj. If

xi ¼ xj or yi ¼ yj, the pair is neither concordant

nor discordant. Specifically, for a pair of objects

taken at random, t can be interpreted as the differ-

ence between the probability for these objects to be

in the same order and the probability of these objects

being in a different order.

A null hypothesis test can be performed by trans-

forming t into a Z value as Zt ¼
t
st

, where

st ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2 2nþ5ð Þ

9n n�1ð Þ

q
is the standard deviation of t. This

Z value is asymptotically normally distributed with

a mean of 0 and a standard deviation of 1. The

Kendall’s rank correlation coefficient varies from

�1 to 1, and the interpretations are the same for

the Spearman’s correlation coefficient.

The R function for Kendall’s t test is cor.test with

parameter method¼‘kendall’ (package stats). The

package stats can be downloaded from the R Web

page (http://www.r-project.org).
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Distance correlation
Distance correlation was introduced by Szekely et al.
(2007) [9] to identify non-linear relationships between

two random variables. The name distance correlation

comes from the fact that it is based on the concept of

energy distances (a statistical distance between prob-

ability distributions). The distance correlation is given

by dividing the distance covariance between X and Y
by the product of their distance standard deviations. In

other words, let k�k be the Euclidian distance,

ak, l ¼ xk�k xlk and bk, l ¼ yk�
�� yl

�� for

k, l ¼ 1, 2, . . . , n. Define ak as the kth row mean,

a;l as the lth column mean and a as the grand mean

of the distance matrix of X; bk as the kth row mean,

b;l as the lth column mean and b as the grand mean of

the distance matrix of Y; Ak, l ¼ ak, l � ak � a;l þ a;
and Bk, l ¼ bk, l � bk � b;l þ b. Then, the distance co-

variance between X and Y, the distance variance of X
and the distance variance of Y are defined as

dCovðX,YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n2

Pn
k¼1, l¼1 Ak, lBk, l

q
, dVarðXÞ ¼

dCovðX,YÞ and dVarðYÞ ¼ dCovðY,YÞ,
respectively.

Using aforementioned definitions, the distance

correlation is defined as follows:

dCorðX,YÞ ¼
dCovðY,YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dVarðXÞdVarðYÞ
p

The value of dCor ranges between 0 and 1, where

distance correlation is 1 in the case of a perfect linear

dependence and 0 in case the random variables

are not dependent. In the case of imperfect linear

dependence, 0<dCorðX,YÞ<1.

To estimate the P-value under H0, a permutation

test [9,11] can be used to test if dCor ¼ 0 (which

occurs if and only if dCov ¼ 0).

The permutation procedure to test independence

between two random variables X and Y is as follows:

(i) Construct a permutated data set under the null

hypothesis ðx1, y�1Þ, ðx2, y�2Þ, . . . , ðxn, y�nÞ by

fixing xi and permuting yi;
(ii) Calculate the test statistic dCov on this permu-

tated data set ðx, y�Þ;
(iii) Repeat steps (i) and (ii) until the desired number

of permutated replications is obtained.

The P-value from the permutation test is the frac-

tion of replicates of dCor on the permutated data set

ðx, y�Þ that are at least as large as the observed statistic

on the original data set ðx, yÞ.

The R function for distance correlation test is

dcov.test (package energy). The energy package can

be downloaded from the R Web page (http://

www.r-project.org).

Hoeffding’sDmeasure
The intuitive idea of Hoeffding’s D measure

[10] is to test the independence of the data

sets by calculating the distance between the

product of the marginal distributions under the

null hypothesis and the empirical bivariate

distribution.

Let Ri and Si be the rank of xi and yi, respectively,

and Qi be the number of points with both x
and y values less than the ith point, i.e.

Qi ¼
Pn

j¼1 fðxj, xiÞfðyj, yiÞ, where fða, bÞ ¼ 1 if

a < b and fða, bÞ ¼ 0 otherwise. In other words,

the quantity Qi is the number of bivariate observa-

tions ðxj, yjÞ for which xj < xi and yj < yi.
Set D1 ¼

Pn
i¼1 QiðQi � 1Þ, D2 ¼

Pn
i¼1 ðRi � 1Þ

ðRi � 2ÞðSj � 1ÞðSj � 2Þ and D3 ¼
Xn

i¼1
ðRi � 2Þ

ðSi � 2ÞQi

Then, the formula for Hoeffding’s D measure is

given by:

DðX,YÞ ¼
ðn� 2Þðn� 3ÞD1 þD2 � 2ðn� 2ÞD3

nðn� 1Þðn� 2Þðn� 3Þðn� 4Þ
:

Asymptotically, the test for independence can be

carried out as follows: let a be the desired level of

significance, P be the probability distribution under

H0 and rn be the smallest number satisfying the in-

equality PfDðX,YÞ > rng � a. Reject the hypoth-

esis H0 of independence if and only if

PfDðX,YÞ > rn, where rn ¼
1
30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn2þ5n�32Þ

9nðn�1Þðn�3Þðn�4Þa

q
.

Hoeffding’s D measure rn varies from � 1
60

to 1
30

.

Differently of Pearson’s, Spearman’s and Kendall’s

correlation measures, the positive and negative signs

of rn do not have any interpretations, because

Hoeffding’s D measure identifies non-monotonic

relationships also.

The R function for Hoeffding’s D test is hoeffd

(package Hmisc). The package Hmisc can be down-

loaded from the R Web page (http://www.r-pro

ject.org).

Heller, Heller and Gorfine measure
Heller, Heller and Gorfine [11] propose a test of

independence based on the distances among values

of X and Y, i.e. dðxi, xjÞ and dðyi, yjÞ for

i, j 2 f1, . . . ng, respectively. Intuitively, note that if
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X and Y are dependent and have a continuous joint

density, then there exists a point ðxi, yiÞ in the sample

space of ðX,YÞ, and radii around xi and yi, respect-

ively, such that the joint distribution of X and

Y differs from the product of the marginal distri-

butions in the Cartesian product of balls around

ðxi, yiÞ [11].

Heller et al. perform the test in the following

manner. For each observation i and each j 6¼ i,
i � n, j � n, define:

A11ði, jÞ ¼
Xn

k¼1;k6¼i, k 6¼j
I dðxi, xkÞ
�

� dðxi, xjÞ
�

I dðyi, ykÞ � dðyi, yjÞ
��
,

A12 ¼
Xn

k¼1;k6¼i, k 6¼j
I dðxi, xkÞ
�

� dðxi, xjÞ
�

I dðyi, ykÞ > dðyi, yjÞ
��
,

A21 ¼
Xn

k¼1;k6¼i, k 6¼j
I dðxi, xkÞ
�

> dðxi, xjÞ
�

I dðyi, ykÞ � dðyi, yjÞ
��
,

A22 ¼
Xn

k¼1;k6¼i, k 6¼j
I dðxi, xkÞ
�

> dðxi, xjÞ
�

I dðyi, ykÞ > dðyi, yjÞ
��
,

where If:g is the indicator function.

Let Sði, jÞ ¼
ðn� 2Þ

n
A12ði, jÞA21ði, jÞ � A11ði, jÞA22ði, jÞ

o2

A1:ði, jÞA2:ði, jÞA:1ði, jÞA:2ði, jÞ

where Am: ¼ Am1 þ Am2 and A:m ¼ A1m þ A2m for

m ¼ 1, 2.

To test the independence between two random

variables X and Y, Helleretal. suggested the following

statistic:

T ¼
Xn
i¼1

Xn
j¼1
j 6¼1

Sði, jÞ

where the expectation of T is nðn� 1Þ under the

null hypothesis (for independent data).

The permutation test for HHG measure is the

same performed for the distance correlation in the

section Distance correlation.

The R function for HHG test is pvHHG

(package HHG2x2). The package HHG2x2
can be downloaded from Ruth Heller’s Web

page (http://www.math.tau.ac.il/�ruheller/Softwa

re.html).

Mutual information
MI is one of many quantities that measure how

much one random variable tells us about another.

The MI of two continuous random variables X and

Y can be defined as:

MIðX,YÞ ¼
ZZ

fX,Y ðx, yÞ log2

fX,Y ðx, yÞ
fXðxÞfY ðyÞ

� �
dxdy

MI can assume only positive values. High MI

indicates a large reduction in uncertainty, low MI in-

dicates a small reduction and zero MI between two

random variables means the variables are independent

[12]. Notice that if X and Y are independent, by the

definition of dependent data given in the section

STATISTICAL INDEPENDENCE BETWEEN

TWO RANDOM VARIABLES ( fX,Yðx, yÞ ¼

fXðxÞfYðyÞ), we have that log2
fX,Y ðx, yÞ
fX ðxÞfY ðyÞ

� 	
¼ 0, and

consequently, MIðX,YÞ ¼ 0.

As an analytical statistical test for MI is in general

not available [15], the significance of the MI should

be tested by assuming strong constraints on the data

or by using a permutation procedure. The permuta-

tion test used for MI is the same as described in the

section Distance correlation.

There are several algorithms to estimate MI

[15–17]. For discrete data, density functions fXðxÞ,
fYðyÞ and fX,Yðx, yÞ can be estimated by simply

counting the events. For continuous data, one

well-known method is based on estimating the dens-

ity function by the Gaussian kernel regression using

the Nadaraya–Watson estimator [18], and normaliz-

ing the integral under the curve to 1. The choice of a

different estimator or set of parameters for MI may

vary the estimations considerably. Here, we chose

the kernel density estimator because it was already

described to be better than the standard histogram-

based estimator [19] and also provided good results in

other comparative studies [20]. We do not discuss

further details about the methods to estimate MI

because it is not the scope of this work. For a

good review, see [21].

The R function for MI is mi.empirical (package

entropy). The package entropy can be downloaded

from the R Web page (http://www.r-project.org).

Maximal information coefficient
Intuitively, MIC [13] is based on the idea that if a

relationship exists between two random variables,

then a grid can be drawn on the scatterplot of the

two variables that partitions the data to encapsulate

that relationship. Thus, to calculate the MIC of a set

of two-variable data, all grids up to a maximal grid

resolution are explored, dependent on the sample
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size, computing for every pair of integers, ða, bÞ the

largest possible MI achievable by any a-by-b grid

applied to the data. Then, these MI values are nor-

malized to ensure a fair comparison between grids of

different dimensions and to obtain modified values

between 0 and 1. The characteristic matrix M is

defined as M ¼ ðma, bÞ, where ðma, bÞ is the highest

normalized MI achieved by an a-by-b grid, and the

statistic MIC to be the maximum value in M.

Formally, for a grid G, let MIG denote the MI of

the probability distribution induced on the boxes of

G, where the probability of a box is proportional

to the number of data points falling inside the box.

The ða, bÞ-th entry ma, b of the characteristic matrix

equals Ma, b ¼
ðMIGÞ

log minfa, bg, where the maximum is

taken over all a-by-b grids G. MIC is the maximum

of ma, b over ordered pairs ða, bÞ such that ab < B,

where B is a function of sample size. Usually, set

B ¼ n0:6.

The permutation test for MIC is the same as that

performed for distance correlation in the section

Distance correlation.

The Java code to compute MIC with an R wrap-

per can be downloaded from http://www.explore

data.net/Downloads/MINE-Application.

COMPARATIVE STUDIES
To compare the performance of the eight methods,

both simulations and applications to actual biological

data sets were carried out.

Simulations
To illustrate the strengths and limitations of each

method, we performed a systematic simulation

study that analyzes the effects of the number of ob-

servations and type of dependence (linear, non-linear

monotonic/non-monotonic and non-functional).

Figure 1 is an example of the types of relationships

studied here. The construction of the scenarios is

described in the supplementary material. Figure 1A

is the case that two random variables are independ-

ent, i.e. under the null hypothesis. Linear association

(alternative hypothesis) is represented by a line

(Figure 1B), non-linear monotonic association (alter-

native hypothesis) is represented by an exponential

curve (Figure 1C), non-linear non-monotonic asso-

ciations (alternative hypotheses) are represented

by quadratic (Figure 1D) and sine (Figure 1E) func-

tions, and non-linear non-monotonic associations

(alternative hypotheses) are represented by the

circumference (Figure 1F), cross (Figure 1G) and

square (Figure 1H) shape relationships. Moreover,

we also illustrate the case of local correlation (alter-

native hypothesis), i.e. when part of the data (20% of

data points) is linearly correlated (represented by

crosses at Figure 1I) and the rest is independent.

For each scenario described in Figure 1, 1000 repe-

titions were carried out for different numbers of

observations. The number of observations analyzed

in this study was n ¼ 10, 30, 50 for independent,

linear, exponential, quadratic, sine, circumference

and cross associations. For square association, the

numbers of observations was n ¼ 40, 140. For local

correlation, n ¼ 100. For further details regarding the

simulations, refer to supplementary material.

To evaluate the performance of the methods, a

receiver operating characteristic (ROC) curve was

constructed for each scenario and each number of

observations, and the area under this curve was cal-

culated. The ROC curve is useful in evaluating the

power of the test. It consists in a bi-dimensional plot

of one minus the specificity in the x-axis versus sen-

sitivity in the y-axis, where specificity¼ number of

true-negatives/(number of true-negativesþ number

of false-positives) and sensitivity¼ number of true-

positives/(number of true-positivesþ number of

false-negatives). In our case, the P-value (nominal

level) is on the x-axis and the proportion of rejected

null hypothesis, i.e. the proportion of associations

identified between two random variables, on the

y-axis. The area under the ROC curve is a quanti-

tative summary of the power of the employed test

and it varies from 0 to 1. In other words, an area

close to 1 denotes high power, whereas an area

below 0.50 means that the method is not able to

identify dependence. An area close to 0.50 is equiva-

lent to random decisions. To calculate the area under

the ROC curve, we computed the Riemman sum

with intervals of 0.001. Table 1 describes the areas

under ROC curves.

By analyzing the number of falsely identified

dependencies between independent random vari-

ables, notice that all the eight methods present

areas under ROC curves close to 0.50. In other

words, it means that all the eight methods indeed

control the rate of false-positives under the null hy-

pothesis (i.e. the frequency of falsely rejected null

hypothesis is proportional to the P-value threshold),

as expected. One may notice that Hoeffding’s D
measure presents an area under the ROC curve

slightly greater than 0.50. It can be explained by
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the fact that for P-values greater than 0.40, it over-

estimates the number of false-positives, as previously

discussed [22]. However, as usually only P-values

<0.05 are considered as statistically significant, it is

not a cause of worry.

By analyzing the cases of relationships under the

alternative hypothesis, the majority of the methods

were shown to be consistent according to the

number of observations. The greater the number of

observations, the greater the areas under the ROC

curves (the power of the test). Exceptions are the

Pearson’s, Spearman’s and Kendall’s correlations for

non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-

lationships. These results mean that independent of

the number of observations, these methods are not

able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-

ships studied here, including linear, non-linear

monotonic/non-monotonic functions and also

non-functional relationships (indicated by the areas

under the ROC curves close to 1). Exception is the

square association that was identified only by the

HHG method. We note that distance correlation

did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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Table 1: Areas under ROC curves (2.5% quantile, mean and 97.5% quantile) obtained by applying each method
(Pearson’s correlation, Spearman’s correlation, Kendall’s correlation, distance correlation, HHG measure,
Hoeffding’s D measure, mutual information - MI and maximal information coefficient - MIC) on 12 different condi-
tions and numbers of data points (n)

Type of association/
Method

n Pearson Dcor Spearman Kendall

2.50% Mean 97.50% 2.50% Mean 97.50% 2.50% Mean 97.50% 2.50% Mean 97.50%

Independent
10 0.49 0.5 0.52 0.49 0.51 0.53 0.48 0.5 0.51 0.44 0.46 0.48
30 0.48 0.5 0.51 0.47 0.49 0.51 0.48 0.5 0.52 0.47 0.49 0.5
50 0.49 0.51 0.53 0.49 0.5 0.52 0.49 0.51 0.53 0.5 0.51 0.53

Linear
10 0.81 0.82 0.84 0.79 0.8 0.82 0.78 0.8 0.82 0.76 0.77 0.79
30 0.98 0.98 0.98 0.97 0.97 0.98 0.97 0.98 0.98 0.97 0.98 0.98
50 1 1 1 0.99 0.99 1 0.99 1 1 0.99 1 1

Exponential
10 0.88 0.88 0.88 0.99 0.99 0.99 0.94 0.94 0.95 0.93 0.93 0.94
30 0.96 0.96 0.96 1 1 1 1 1 1 1 1 1
50 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1

Quadratic
10 0.15 0.16 0.17 0.71 0.71 0.71 0.15 0.16 0.17 0.14 0.14 0.15
30 0.19 0.2 0.21 0.99 0.99 0.99 0.16 0.17 0.18 0.2 0.21 0.22
50 0.2 0.21 0.22 1 1 1 0.18 0.18 0.19 0.22 0.23 0.23

Sine
10 0.27 0.28 0.29 0.28 0.29 0.3 0.3 0.32 0.33 0.23 0.24 0.25
30 0.34 0.35 0.37 0.88 0.88 0.89 0.37 0.38 0.39 0.34 0.35 0.37
50 0.38 0.4 0.41 0.98 0.98 0.98 0.41 0.42 0.44 0.41 0.42 0.43

Circumference
10 0.09 0.09 0.1 0.1 0.1 0.11 0.23 0.24 0.24 0.19 0.2 0.2
30 0.08 0.09 0.09 0.17 0.18 0.18 0.15 0.15 0.16 0.17 0.18 0.19
50 0.09 0.09 0.09 0.38 0.38 0.39 0.15 0.15 0.16 0.17 0.18 0.19

Cross
10 0.08 0.09 0.09 0.02 0.03 0.03 0.13 0.14 0.15 0.1 0.11 0.11
30 0.11 0.11 0.12 0.45 0.46 0.46 0.11 0.11 0.12 0.11 0.11 0.12
50 0.11 0.12 0.12 0.77 0.77 0.78 0.11 0.11 0.11 0.11 0.11 0.12

Square
40 0.24 0.26 0.26 0.17 0.18 0.19 0.26 0.27 0.27 0.25 0.26 0.28
140 0.24 0.25 0.26 0.44 0.45 0.46 0.25 0.26 0.27 0.24 0.25 0.26

Local correlation 100 0.28 0.29 0.3 1 1 1 0.41 0.43 0.44 0.39 0.41 0.42

Type of association/
Method

n Hoeffding HHG MI MIC

2.50% Mean 97.50% 2.50% Mean 97.50% 2.50% Mean 97.50% 2.50% Mean 97.50%

Independent
10 0.48 0.5 0.52 0.49 0.51 0.52 0.35 0.37 0.39 0.33 0.35 0.37
30 0.53 0.54 0.56 0.47 0.49 0.51 0.47 0.48 0.5 0.48 0.5 0.52
50 0.56 0.57 0.59 0.5 0.51 0.53 0.49 0.51 0.52 0.49 0.51 0.53

Linear
10 0.74 0.76 0.78 0.67 0.69 0.71 0.41 0.43 0.45 0.61 0.62 0.64
30 0.96 0.97 0.97 0.89 0.9 0.91 0.67 0.68 0.7 0.86 0.87 0.88
50 0.99 0.99 1 0.97 0.98 0.98 0.78 0.79 0.81 0.91 0.91 0.92

Exponential
10 0.97 0.97 0.98 0.99 0.99 0.99 0 0 0 0.71 0.72 0.74
30 1 1 1 1 1 1 0.86 0.86 0.86 1 1 1
50 1 1 1 1 1 1 0.9 0.9 0.9 1 1 1

Quadratic
10 0.89 0.9 0.91 0.96 0.97 0.97 0.53 0.54 0.56 0.51 0.52 0.52
30 1 1 1 1 1 1 0.99 1 1 1 1 1
50 1 1 1 1 1 1 1 1 1 1 1 1

Sine
10 0.49 0.51 0.52 0.32 0.34 0.35 0.31 0.33 0.34 0.17 0.19 0.2
30 0.96 0.96 0.96 0.98 0.98 0.98 0.92 0.93 0.93 0.99 0.99 0.99
50 0.99 0.99 1 1 1 1 1 1 1 1 1 1

Circumference
10 0.63 0.64 0.64 0.7 0.71 0.72 0.5 0.51 0.52 0.09 0.1 0.1
30 0.87 0.88 0.88 0.96 0.96 0.96 0.72 0.74 0.76 0.69 0.71 0.72
50 0.94 0.95 0.95 0.99 0.99 0.99 0.95 0.96 0.96 0.93 0.94 0.95

Cross
10 0 0 0 0.65 0.66 0.68 0.41 0.42 0.44 0.02 0.02 0.02
30 0.42 0.42 0.43 1 1 1 0.96 0.96 0.97 0.57 0.57 0.58
50 0.84 0.85 0.85 1 1 1 1 1 1 0.97 0.97 0.97

Square
40 0.26 0.27 0.28 0.9 0.9 0.91 0.31 0.33 0.34 0.36 0.38 0.39
140 0.57 0.58 0.59 1 1 1 0.69 0.7 0.72 0.44 0.45 0.47

Local correlation 100 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1
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simulations using less than 100 and 140 data points

(circumference and square scenarios, respectively).

But increasing the number of data points to 1000

(results not shown), distance correlation was able to

identify both dependences as predicted by the

theory.

By analyzing linear and non-linear monotonic

relationships (exponential), Pearson, Spearman,

Kendall, Hoeffding and HHG presented similar per-

formances, whereas methods based on information

theory (MI and MIC) presented the lowest power.

Although, in theory, Pearson’s correlation identifies

only linear relationships, its performance in identify-

ing monotonic associations such as the exponential

association is satisfactory. It occurs due to the fact

that non-linear monotonic relationships can usually

be adjusted well by linear functions.

The analyses of non-linear non-monotonic rela-

tionships (quadratic and sine) show that Hoeffding’s

D measure and HHG are the most powerful meth-

ods, followed by distance correlation, and then by

MI and MIC. For non-functional relationships,

HHG is the most powerful method, followed by

Hoeffding’s D measure, MI, MIC and distance

correlation.

Illustrative biological example
To illustrate an application of the eight methods in

retrieving relevant relationships among gene expres-

sion signals, we applied them to a data set composed

of 168 DNA microarrays derived from stage I lung

tumor samples. This data set [23,24] is freely available

and can be downloaded from Gene Expression

Omnibus - GEO (http://www.ncbi.nlm.nih.gov/

geo/) with id GSE31210. We chose Wnt as our

illustrative model gene because it is known to be

highly associated with lung cancer and several path-

ways have already been described in the

literature [25].

We selected 81 genes that are already known to

belong to the Wnt pathway (alternative hypothesis -

H1) and 62 control probe sets of the microarray that

should not have any association with Wnt (null

hypothesis - H0).

To study the performance of the methods in dif-

ferent sample sizes, different numbers of observations

(n ¼ 12, 25, 50, 100, 168) were considered to con-

struct the ROC curves under both the null (H0)

and alternative hypotheses. In ROC curves con-

structed under H1, the y-axis is the proportion of

relationships identified between Wnt and the 81

genes already described in the literature as belonging

to its pathway. Under H0, the y-axis is the proportion

of associations identified between Wnt and the 62

controls probe sets. For each varied number of obser-

vations n (n ¼ 12, 25, 50, 100, 168), we sampled n
microarrays and applied the statistical tests. This pro-

cedure was repeated 100 times to construct 100 ROC

curves. The average areas under the 100 ROC curves

(under both H0 and H1) are described in Table 2.

Notice that all the eight methods control the rate

of false-positives under H0 when the sample size is

large (the areas under the ROC curves were �0.50)

(Table 2) in this biological example as well as in our

simulations. This means that although some hypoth-

eses of the statistical tests are eventually not valid in

actual biological data (sometimes all the hypotheses

required by the method cannot be checked), the tests

are still controlling the type I error. We also observed

that, for all the eight methods, the areas under the

ROC curves under alternative hypothesis were

>0.50 (Table 2), meaning that, in fact, it is possible

to retrieve at least part of the regulatory net-

work by using methods that identify dependence

between random variables. Corroborating the results

obtained by simulations, the powers of MI and MIC

were lower than other methods and the decrease of

the power of the methods was proportional to the

decrease of the number of observations n.

To verify how much is the overlap of associations

identified by the methods, the number of co-identi-

fied associations was counted. Table 3 shows the

number of co-identified relationships between Wnt

and 81 genes belonging to its pathway by different

methods assuming different P-value thresholds.

Because biomedical researchers usually try to find

linear and monotonic relationships and then more

complex relationships, we also count how many

findings each of the methods such as distance correl-

ation, HHG, Hoeffding, MI and MIC were able to

identify above the union of the findings of Pearson’s,

Spearman’s and Kendall’s correlations. These results

are described in Table 4.

Notice that the quantity of overlaps is close to the

total amount of significant dependence identified by

each method. Moreover, the number of depend-

ences identified only by methods that are able to

identify more general relationships than monotonic

associations is low (equal or less than four). These

results suggest that for this data set and genes ana-

lyzed, the majority of relationships can be considered

as linear.
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FINALREMARKS
The use of each method depends essentially on

the type of data or relationship one wants to

identify and the number of observations. A sum-

mary of the method to be used depending on the

characteristics of the data set is illustrated in a

decision tree in Figure 2. We considered n � 30

and n < 30 as large and small data sets, respect-

ively. This threshold was chosen based on the

simulations results that showed a high accuracy

for all the methods when n � 30. It is necessary

to point out that this threshold may vary depend-

ing on data variance. For large data sets (n � 30),

methods such as distance correlation, Hoeffding’s

D measure, HHG, MI and MIC could be more

interesting because they identify broad types of

relationships. Methods to identify non-functional

relationships (Hoeffding’s D measure, HHG, MI

and MIC) are interesting in a theoretical point

of view; however, in the analysis of gene

expression signal, non-functional relationships are

difficult to interpret and usually are ignored. On

the other hand, local correlations are interesting in

a biological point of view (one gene may be

associated with another only in a specific expres-

sion range) but are usually ignored too. For

small data sets (n < 30), HHG is recommended

if one is interested in identifying non-functional

relationships.

For the identification of non-linear and non-

monotonic associations, Hoeffding’s D measure and

HHG are recommended.

If hypothesis of linearity or monotonicity can

be assumed, the application of Spearman’s or

Kendall’s correlations may be more useful than

Pearson’s correlation because they identify both

linear and non-linear monotonic relationships

with high power (even when the relationship is

linear, the power is similar to Pearson’s

correlation).

Table 2: Application of the eight methods (Pearson’s correlation, Spearman’s correlation, Kendall’s correlation,
distance correlation, HHG measure, Hoeffding’s D measure, mutual information - MI and maximal information
coefficient - MIC) in an expression data set composed of 168 stage I lung tumors microarrays

n Pearson Dcor Spearman Kendall

2.5% Mean 97.5% 2.5% Mean 97.5% 2.5% Mean 97.5% 2.5% Mean 97.5%

Under H0

12 0.62 0.67 0.72 0.52 0.57 0.64 0.59 0.65 0.70 0.55 0.64 0.71
25 0.51 0.58 0.65 0.59 0.65 0.72 0.58 0.66 0.74 0.62 0.68 0.74
50 0.28 0.34 0.40 0.22 0.28 0.39 0.38 0.43 0.48 0.40 0.45 0.51
100 0.39 0.45 0.52 0.33 0.39 0.44 0.34 0.41 0.47 0.35 0.41 0.48
168 0.27 0.34 0.40 0.34 0.40 0.45 0.26 0.33 0.39 0.28 0.34 0.42

Under H1

12 0.47 0.52 0.59 0.41 0.50 0.57 0.49 0.54 0.61 0.43 0.50 0.56
25 0.53 0.60 0.66 0.57 0.63 0.69 0.51 0.59 0.65 0.51 0.57 0.64
50 0.58 0.64 0.69 0.64 0.68 0.74 0.59 0.64 0.71 0.58 0.64 0.72
100 0.56 0.63 0.69 0.62 0.66 0.72 0.55 0.61 0.66 0.54 0.60 0.67
168 0.59 0.66 0.73 0.62 0.68 0.75 0.60 0.67 0.74 0.59 0.66 0.72

n Hoeffding HHG MI MIC

2.5% Mean 97.5% 2.5% Mean 97.5% 2.5% Mean 97.5% 2.5% Mean 97.5%

Under H0

12 0.49 0.59 0.66 0.36 0.41 0.47 0.24 0.30 0.37 0.34 0.40 0.46
25 0.59 0.66 0.71 0.45 0.52 0.58 0.48 0.55 0.62 0.53 0.60 0.66
50 0.33 0.39 0.45 0.26 0.32 0.39 0.37 0.43 0.48 0.45 0.50 0.55
100 0.42 0.47 0.51 0.32 0.38 0.44 0.39 0.46 0.53 0.32 0.39 0.45
168 0.48 0.52 0.55 0.39 0.44 0.51 0.40 0.48 0.55 0.42 0.49 0.58

Under H1

12 0.45 0.52 0.60 0.42 0.49 0.55 0.29 0.36 0.42 0.32 0.39 0.45
25 0.57 0.62 0.68 0.50 0.56 0.63 0.53 0.58 0.63 0.53 0.59 0.65
50 0.64 0.70 0.76 0.54 0.61 0.67 0.47 0.52 0.58 0.51 0.58 0.64
100 0.62 0.67 0.72 0.55 0.61 0.67 0.49 0.56 0.62 0.52 0.57 0.63
168 0.66 0.72 0.78 0.57 0.63 0.68 0.53 0.59 0.64 0.50 0.57 0.63

The values of the average, 2.5 and 97.5% quantiles under the ROC curves were calculated in100 repetitions and in a varied number of observations
(n¼12, 25, 50, 100, 168).Under H0: associations obtained by applying the methods on expression data of control probe sets (that do not present
any associationwith theWntgene);UnderH1: associations obtainedby applying themethods on expression data of genesbelonging toWntpathway
(which are already known to be associatedwithWnt).

page 10 of 13 de Siqueira Santos et al.
 at Princeton U

niversity on A
ugust 25, 2013

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

5. 
,
,
 very
,
To 
http://bib.oxfordjournals.org/


It is important to clarify that only distance correl-

ation, Hoeffding’s D measure, HHG and MI have

mathematically proven consistency against all alterna-

tives (theoretically, they asymptotically can detect all

situations of deviation from independence). Distance

correlation did not present enough power to identify

non-functional associations in our simulations, but by

increasing the data points to 1000, it correctly identi-

fied them (data not shown) as predicted by theory.

Methods that are applicable in multivariate scenarios

are distance correlation and HHG [9,11].

Another point to be discussed is the relationship

between correlation and causality. It is important to

mention that correlation does not imply causation.

In other words, a correlation between two random

variables does not necessarily imply that one causes

the other. The classic example is when there are two

variables A and B, and one more unobserved variable

C that causes A and B. In this example, by applying

an independence test, one may conclude that A and

B are correlated, but in fact, there is no causal influ-

ence between them.

Although correlation does not imply causation,

correlation can be used as a hint to identify causality

between random variables. For example, suppose

two time series A and B. The identification of a

correlation between past values of A and future

values of B may be an indication that A causes B

(due to our intuitive concept that the cause never

occurs after its effect). This type of correlation be-

tween lagged time series is known as Granger caus-

ality [26]. However, even Granger causality is not

causality in a deep sense of the word because it is

also based only on numeric predictions. So, how one

can establish causality? This is a challenging problem,

Table 3: Number of co-identified relationships between Wnt and 81 genes belonging to its pathway by different
methods and assuming different P-value thresholds

P-value threshold Pearson Dcor Spearman Kendall Hoeffding HHG MI MIC

Pearson 0.01 12 8 10 10 10 4 3 2
0.05 19 18 16 16 14 8 4 6
0.1 28 25 23 23 23 14 10 9

Dcor 0.01 11 11 11 10 5 4 1
0.05 22 17 17 16 11 5 6
0.1 32 25 25 28 17 10 12

Spearman 0.01 15 15 14 5 4 2
0.05 24 24 21 10 7 6
0.1 30 30 27 14 11 11

Kendall 0.01 15 14 5 4 2
0.05 24 21 10 7 6
0.1 30 27 14 11 11

Hoeffding 0.01 14 5 4 2
0.05 22 11 5 6
0.1 31 18 10 12

HHG 0.01 7 4 1
0.05 15 5 3
0.1 20 6 7

MI 0.01 4 1
0.05 8 1
0.1 15 5

MIC 0.01 3
0.05 8
0.1 14

In gray are highlighted the total number of relationships identified by the respectivemethod.

Table 4: Number of findings each of themethods such
as distance correlation, HHG, Hoeffding, MI and MIC
was able to identify over and above the union of the
findings of Pearson’s, Spearman’s and Kendall’s correl-
ations assuming different P-value thresholds

P-value
threshold

Dcor Hoeffding HHG MI MIC

0.01 0 0 2 0 1
0.05 2 1 4 1 2
0.10 3 3 4 3 3
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especially in molecular biology. The most effective

way to identify causality is through a well-controlled

experiment. For example, two groups of cells whose

are comparable in almost every way are submitted to

different conditions. If the two groups of cells have

statistically different outcomes, then the different

condition may have caused the different outcome.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

	 Uncorrelated randomvariables do notmean independency.
	 Understanding the different measures to identify dependent

genes is crucial to model gene regulatory networks.
	 The choice of a suitablemethod to identify dependencybetween

random variables depends on several constraints (sample size
and type of dependency) and goals.
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