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Abstract. Currently available asymptotic confidence interval/null hypothesis threshold results for 
partial directed coherence (PDC) are strictly valid for vector autoregressive (VAR) processes of finite 
order p. The present paper discusses the extension to more general situations when VAR(p) are used as 
approximations to more general VAR processes of infinite order, in which case the order of the best 
fitted model becomes a function of the number of available data points and the resulting confidence 
intervals must be rescaled appropriately. 
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1. Introduction 
Introduced recently as a tool for pinpointing the direct link between neural structures [Baccalá and 

Sameshima, 2001], PDC is based on the factorization of partial coherence [Bendat and Piersol, 1986] 
by means of fitting VAR models to multivariate neural activity data. The growing literature on PDC 
[Sameshima and Baccalá, 1999; Fanselow et al., 2001; Baccalá et al., 2004, Supp et al. 2005; Astolfi et 
al., 2006; Astolfi et al., 2007; Supp et al. 2007] and other connectivity inference methods [Kaminski 
and Blinowska, 1991; Kaminski et al., 2001; Yamashita et al., 2005] has a visible application oriented 
bias. Instead, the theoretical investigation of their statistical adequacy is relatively scarce even in ideal 
situations amenable to analytical investigation. 

Rigorous asymptotic confidence interval results for PDC have been obtained recently [Takahashi 
et al., 2007] by assuming that the underlying data generating processes were VAR of finite known 
order, a fact that is seldom valid in practice. In fact, in many cases, even simple vector moving average 
data generating mechanisms are physiologically plausible and are mathematically equivalent to VAR 
models of infinite order [Lütkepohl, 1993]. In addition, VAR processes of infinite order arise in more 
general situations making their consideration important from a practical standpoint. 

Here we discuss how to generalize the former rigorous results to encompass the infinite order 
VAR process case under mild conditions that guarantees PDC convergence by fitting VAR models 
whose order depends on the signal duration in terms of the number of available time samples. 

The present paper also states the allied results (modified from [Schelter et al. 2006; Takahashi et 
al., 2007] for null hypothesis testing of zero connectivity.  

After notational preliminaries, the formal results are stated without proof followed by a numerical 
example. 

2. Preliminaries 

Consider that [ ]TN kxkxk )(,),(=)( 1 Kx , nk ≤≤1 , is a simultaneously observed jointly 
second-order stationary time series with VAR( p ) representation, i.e.,  
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 where the )(raij  coefficient in rA  describes the linear relationship between time series )(kxi  and 

)(kx j  at the r -th past lag, and )(kw  represent the driving innovations. 
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The allied partial directed coherence from )(kx j  to )(kxi  is given by [Sameshima and Baccalá, 

1999; Baccalá and Sameshima, 2001] as  
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where  
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with 1=ijδ  if ji =  and 0=ijδ  otherwise. 

To compactly state the asymptotic statistical behaviours for (2) when the true data generation 
process is a stable, potentially infinite order VAR process for the sample size n  (duration), 
approximated by (1), it is convenient to introduce the following notation: 
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where I  is an NN ×  identity matrix and vec  stands for the usual matrix column stacking operator. 
Also let  
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Also let  

 ⎥
⎦

⎤
⎢
⎣

⎡

ij

ijc
ij I

I
I

0
0

=   

 where the 22 NN ×  matrix ijI  is made by zeros except for the entry 

)1)(,1)((=),( iNjiNjml +−+− , which equals 1. 
Likewise  
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contains 22 NN ×  blocks jI  with zeros except for jNmlNjml ≤≤+− =11)(:),( . 

This allows rewriting 2|)(| λπ ij  as a ratio of quadratic forms of real variables  
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Consider also the 22 pNN ×  dimensional matrices  

 )]()([=)( 1 λλλ pCCC K   

and  
 )],()([=)( 1 λλλ pSSS K   

such that  
 )])(2)(2([=)( λπλπλ rcosrcosdiagr KC   

and  
 )]).(2)(2([=)( λπλπλ rsinrsindiagr KS   
 

Finally  
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3. Results 
Under the condition that the )(kx  multivariate data is produced by a potentially infinite order 

VAR process with absolutely summable rA , i.e.,  
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and is canonically represented as a vector moving average process (VMA)  
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Proposition 1 If a finite order VAR( np ) process is fitted by multivariate least squares so that its order 

np  depends upon the sample size n  under the conditions that  
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and 0|)(| 2≠λπ ij  nor 1|)(| 2≠λπ ij . 

Then PDC´s estimator 2|)(ˆ| λπ ij  obtained by substituting the estimated values in (2) and (3) 

is consistent and asymptotically distributed as 
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In the above equations  
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where (0)xΓ  and wΣ  stand, respectively, for the autocovariance matrix of )(kx  and the covariance 

matrix of )(kw . The hat above the variables indicates the associated least-squares estimates.  
 
Proposition 2 When 0=|)(| 2λπ ij  or 1=|)(| 2λπ ij , under the conditions of Proposition 1,  
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where )(λkl are the eigenvalues of )()(=)( λλλ LILD ij
T , in which the matrix )(λL  is the 
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Choleski factor in  
 ),()(=)( λλλ TLLΩ  
  

where 2=)(= Drankq , unless 0.5}{0,±∈λ  or 1=p  leading to 1=q .  
 

The proofs of these results employ the asymptotics in [Lütkepohl, 1993] and follow the procedures 
adopted in [Takahashi et al., 2007]. The validity of Proposition 2 for 1=|)(| 2λπ ij  is a new result.  

Numerical Example 
To illustrate the validity of the results, an invertible VMA process with an infinite order VAR 

process representation was simulated. Proposition 1 was used to compute the approximate confidence 
interval and Proposition 2 to calculate the test statistics under the null hypothesis of 0=|)(| 2λπ ij . 

The simulated VMA is given by: 
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where )(kwi  are mutually uncorrelated standard Gaussian innovations and corresponds to the 
VAR(∞ )  
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wherefrom the only existing unidirectional connectivity is clearly from )(2 kx  to )(1 kx . 

The computed approximate confidence intervals and tests for the nullity of PDC for 
2000200,20,=n  observed points are shown in Figure 1. Note that in practice, the conditions on the 

growth of np  are difficult to verify and criteria like AIC must be used. Thus, in the present example, 
the computed confidence intervals and statistical tests were calculated for the VAR( p ) model whose 
order p  was estimated by AIC and lead to reasonable results even for as few as 20 data samples. 

A computational MATLAB program that calculates PDC and its statistics for a given data set can 
be obtained at http://www.lcs.poli.usp.br/~baccala/pdc/. 

4. Discussion 
As should possibly be expected, the present result compared with [Takahashi et al., 2007] leads to 

slightly slacker confidence intervals, whose slackness depends on np . If n  is large the new limits 
obtained are virtually identical to the old ones in [Takahashi et al., 2007]. 

The assumption that time series data results from a finite order VAR process is very restrictive, if 
not unrealistic, thus the rigorous inclusion of infinite order VAR processes considerably enhances the 
theoretical scope of applicability of the available statistical asymptotic results [Schelter et al., 2006; 
Takahashi et al., 2007]. Furthermore, these results show the consistency of applying these 
considerations to finite order VAR(p) processes without requiring explicit a priori knowledge of its 
order. This is essentially equivalent to a nonparametric result in the sense that the finite parameter 
model, with an increasing number of data points, is used to estimate an infinite parameter model.  

Also of note is that this result can justify the use of VAR models in the inference of the relationship 
between some deterministic nonlinear processes as in [Schelter et al., 2006] if a very large number of 
points is available and a VAR model of sufficiently high order is fitted. This possibility is theoretically 
justified because these processes can be represented as jointly nondeterministic linear processes 
[Priestley, 1981].  
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Figure 1. Results of simulations for 20 (upper panels), 200 (middle panels) and 2000 (bottom panels) time points. 

The solid green line indicates the threshold value under the hypothesis of zero PDC (α = 5%) and the 
dotted black line indicates the 95% confidence intervals. The solid black line is the true value for the 
simulated model, the red line is the estimated value when above the null hypothesis threshold and the 
yellow line stands the estimated values below the thresholds.  

5. Conclusion 
Rigorous asymptotic distributions for estimated PDC statistics were obtained and illustrated via the 

simple example of a VMA process. 
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