Home | Contents

DynaflowTM

Chapter 10

10.0 Material Models
  10.0 Material Control Information
    10.0.1 Define a Material Model
    10.0.2 Stress Models
    10.0.3 Heat Conduction Models
    10.0.4 Scalar Diffusion Models
    10.0.5 Electric Models
  10.1 Stress_Model:  Linear Isotropic Elasticity Model
  10.2 Stress_Model:  Linear Orthotropic Elasticity Model
  10.3 Stress_Model:  Hyperelasticity Model
  10.4 Stress_Model:  Mises Viscoelastic Creep Model
  10.5 Stress_Model:  Von Mises Elasto-(Visco-) Plastic Model
  10.6 Stress_Model:  Drucker-Prager Elasto-(Visco-) Plastic Model
  10.7 Sterss_Model:  Matsuoka Elasto-(Visto-) Plastic Model
  10.8 Stress_Model:  Cap Model (Geomatertials)
  10.9 Stress_Model:  Multi-Yield Elasto-Plastic Models (Geomaterials)
  10.10 Stress_Model:  Multi-Mechanism Elasto-Plastic Models (Geomaterials)
    10.10.1 Material Properties Cards
  10.11 Stress_Model:  Phillips Consistutive Model
    10.11.1 Material Control Data
    10.11.2 Material Properties Data
    10.11.3 Uniaxial Stress-Strain Curves and Creep Data
  10.12 Stress_Model:  Isotropic Hypo Plastic Model
  10.13 Stress_Model: Mohr_Coulomb Elasto-(Visco-) Plastic Model
  10.14 Stress_Model:  ID Multi-Yield Model
  10.15 Stress_Model:  Newtonian Fluid Model
  10.16 Heat_Conduction_Model:  Generalized Heat Conduction Model
    10.16.1 Multi_Phase Fluid Flow
  10.17 Scalar_Diffusion_Model:  Generalized Scalar Diffusion Model
    10.17.1 Multi-Phase Fluid Flow
      10.17.1.1 Fluid Phase Data
      10.17.1.2 Relative Permeability and Capillary Pressure Data
  10.18 Electric_Model:  Generalized Electric Model

 

Copyright © 1983 Princeton University
This program is proprietary to Princeton University, Princeton, New Jersey. It may only be used as authorized in a license agreement controlling such use.