10.7     Stress_Model: Matsuoka Elasto-(Visco-)Plastic Model

 

MATSUOKA

 

 

            Material_name = MATSUOKA

                  Material_set_number = mset ,  etc...

 

 

            The yield function is of the following type :

 

f = cyJ3 - (cy - 3)(p - at)J2 + (cy - 9)(p - at)3 = 0

where

s =  - p          p = tr()/3        J2 = tr(s2)/2          J3 = tr(s3)/3 = det(s)

 

cy and at are material constants. The Matsuoka cone which is closest to the Mohr-Coulomb yield surface is obtained by setting:

 

                         cy = (9 - sin) / (1 - sin)                         at = c  tan

 

where c = Mohr-Coulomb cohesion, = Mohr-Coulomb friction angle. If the dilation angle  an associative flow rule is used. Otherwise a non-associative flow rule is used. The following hyperelastic stored energy function with uncoupled volumetric and deviatoric parts is employed:

 

where

 

 

References / Bibliography

 

1.      Matsuoka, H. and T. Nakai, "Relationship Among Tresca, Mises, Mohr-Coulomb and Matsuoka-Nakai Failure Criteria," Soils and Foundations, 5, No. 4, (1985), 123–128.

 


 

Note    Variable Name              Type  Default   Description

 

Keywords Read Method

            Material_set_number   integer    [1]       Material set number  Numat

 

(1)        Hyperelastic_case        integer    [0]       Hyperelastic free energy function:

                                                                                

                                                                                

 

            Tension_cutoff               list      [off]     Tension cutoff options:

                  on / off                 

 

            Mass_density                 real     [0.0]     Mass density

 

            Shear_modulus               real     [0.0]     Shear modulus G

 

            Bulk_modulus                real     [0.0]     Bulk modulus B

 

            Activation_time             real     [0.0]     Time at which nonlinearities are activated.

 

            Friction_angle                real     [0.0]     Friction angle  > 0.0

 

            Cohesion                        real     [0.0]     Cohesive coefficient c

 

            Dilation_angle                real     [0.0]     Dilation angle   0.0

 

            Relaxation_time             real     [0.0]     Relaxation time constant   0.0

                                                                                  0.0, Elastoplastic

                                                                                  > 0.0, Elastoviscoplastic

 

            Variable_cohesion       integer    [0]       Variable cohesion load time function number

 

            Variable_friction         integer    [0]       Variable friction angle load time function

                                                                                 number

 

(2)        Initial_stress

                 initial_stress_11         real     [0.0]     Component 11 ()

                 initial_stress_22         real     [0.0]     Component 22 ()

                 initial_stress_33         real     [0.0]     Component 33 ()

                 initial_stress_12         real     [0.0]     Component 12 ()

                 initial_stress_23         real     [0.0]     Component 23 ()

                 initial_stress_31         real     [0.0]     Component 31 ()

 

(3)        Solid_mass_density       real     [0.0]     Mass density (Solid Phase)

 

(3)        Fluid_mass_density       real     [0.0]     Mass density (Fluid Phase)

 

(3)        Fluid_bulk_modulus      real     [0.0]     Fluid bulk modulus

 

(3)        Porosity                          real     [0.0]     Porosity

 

(cont'd)


 

(cont'd)

 

Note    Variable Name              Type  Default   Description

 

List Read Method

            Material data must follow in the form:

                 < m, IHyper(m), G(m), B(m), (m), (m), (m), (m), Pf(m) >

                 <(m), c(m), (m), (m).  ltime_coh(m),  ltime_phi(m) >

                 < (Stres(i, m), i = 1, 6) >

                 < terminate with a blank record >.

 

 

Notes/

(1)        Only applicable to finite deformation case (see Section 9.2.1).

 

(2)        Tensile stresses are positive.

 

(3)        Only applicable to porous media models.


 

 

Notes . .