10.9     Stress_Model: Multi-Yield Elasto-Plastic Models (Geomaterials)

 

            The following hyperelastic stored energy function with uncoupled volumetric and deviatoric parts is employed:

 

where

 

 

            In the small deformation case, the form of the material constitutive tangent moduli tensor  is given as follows:

 

 

in which  = plastic modulus;  and  = symmetric second-order tensors such that  gives the direction of plastic deformations,  is the outer normal to the active yield surface;  = fourth-order tensor of elastic moduli, assumed isotropic for the particular class of material models implemented.

 

            The plastic potential is selected such that:

 

 

            Several material models have been implemented and may be selected by specifying the value of the control parameter Plasticity_sub_type as follows:

 

(1) Plasticity_sub_type = 1 to 5: pressure non-sensitive materials.

 

            The yield function in this case is of the Von Mises type with:

 

 

where  is the deviatoric stress tensor, i.e.,

 

 

 is the coordinate of the center of the yield surface in the deviatoric stress space; and  is the size of the yield surface.

 

(2) Plasticity_sub_type = 8: pressure sensitive materials.

 

            The yield function in this case is of the Drucker-Prager / Mohr_Coulomb type with (see Ref. [5]):

 


 

where ,  attraction .  The function  determines the shape of the cross-section on the deviatoric plane and

 

 

in which

 

                        

 

and  material parameter.  For a Drucker-Prager circular cone:  , whereas for a round-cornered Mohr-coulomb cone:

where  friction angle.

 

            Several different plastic potential functions may be selected by specifying the value of the Plastic_potential_code as follows:

 

  Plasticity_potential_code = 0:

            The plastic potential in this case is selected as follows:

 

 

in which  normalized stress ratio, viz.,

 

with  dilation stress ratio, and  dilation parameter (see Ref. [6]) as:

 

in which  damage_rate, and  cumulative plastic shear distortions, viz.,

 

with

 plastic shear distortion rate.


     Plastic_potential_code = 1:

            The plastic potential in this case is selected as follows:

 

1.  Compactive phase: 

2.  Dilative phase: 

 

     (loading case)

 

     (unloading case)

 

where  outer normal to the yield surface.

 

            As previously,  dilatational parameter, which is scaled according to the level of confinement as follows:

 

with  reference mean normal stress.

 

            A collection of nested yield surfaces may be used.  This allows for the adjustment of the plastic hardening rule to any experimental hardening data; for example, data obtained from axial or simple shear tests.  It is assumed that the yield surfaces are all similar, and that a plastic modulus () is associated with each one.

 

            Several different plastic hardening rules may be selected by specifying the value of Plasticity_sub_type, as indicated below:

 

  Plasticity_sub_type= 1:   Isotropic hardening rule

            The yield surfaces in this case do not change position, but merely increase in size as loading proceeds. 

 

  Plasticity_sub_type = 2: Isotropic hardening/softening rule

            This case is a generalization of the previous model in which softening starts to occur when the outermost yield surface is reached.  At this point, the elasto-plastic shear modulus is set to be , and remains constant until .LE.. Thereafter .

 

  Plasticity_sub_type = 3: Kinematic hardening rule

            In this case, the yield surfaces do not change size, but are translated in stress space by the stress point.

 

  Plasticity_sub_type = 4: Kinematic hardening/Isotropic softening rule


            In this case a combination of kinematic/isotropic hardening laws is used.  A nonlinear isotropic hardening/softening model is adopted in which a saturation hardening/softening function of the exponential type is used as follows:


   where r =   = reduction strength ratio (r > 0), and  = reduction_rate

             are material parameters;  cumulative plastic shear distortions.

 

  Plasticity_sub_type= 5:   Kinematic hardening/Isotropic softening rule

            The particular material model implemented in that option assumes cyclic degradation of the material properties according to the rule:

 

 

as observed in cyclic strain-controlled simple shear soil tests;  Shear stress amplitude;  Shear strain amplitude;  Number of cycles.

 

  Plasticity_sub_type = 8: Kinematic hardening rule

            A purely kinematic hardening is adopted for that  model.  The dependence of the moduli on the effective mean normal stress is assumed of the following form:

 

where , and  power exponent, a material constant (see e.g., Ref. [9]). The following may be used as estimates: for cohesionless soils , and  for cohesive soils.

 

 

References / Bibliography

 

1.      Prevost, J.H.,"Plasticity Theory for Soil Stress-Strain Behavior," J. Eng. Mech. Div., ASCE, Vol. 104, No. EM5, (1978), pp. 1177-1194.

 

2.      Prevost, J.H., and T.J.R. Hughes,"Finite Element Solution of Elastic-Plastic Boundary Value Problems," J. Appl. Mech., ASME, Vol. 48, No. 1, (1981), pp. 69-74.

 

3.      Prevost, J.H.,"Nonlinear Transient Phenomena in Elastic-Plastic Solids," J. Eng. Mech. Div., ASCE, Vol. 108, No. EM6, (1982), pp. 1297-1311.

 

4.      Prevost, J.H.,"Localization of Deformations in Elastic-Plastic Solids," Int. J. Num. Meth. Eng., Vol. 8, No. 2, (1984), pp. 187-196.

 

5.      Prevost, J.H.,"A Simple Plasticity Theory for Frictional Cohesionless Soils," Int. J. Soil Dyn. Earth. Eng., Vol. 4, No. 1, (1985), pp. 9-17.

 

6.      Popescu, R., and J.H. Prevost, "Centrifuge Validation of a Numerical Model
for Dynamic Soil Liquefaction," Soil Dyn. and Earth. Eng., Vol. 12, (1993), pp. 73-90.

 

7.      Prevost, J.H. and C.M. Keane, "Shear Stress-Strain Curve Generation from Simple Material Parameters," J. Geotech. Eng., ASCE, Vol. 116, (1990), pp. 1255-1263.

 

8.      Hayashi, H., M. Honda, T. Yamada, and F. Tatsuoka, "Modeling of Nonlinear Stress Strain Relations of Sands for Dynamic Response Analysis," Proceedings, 10th WCEE, Madrid, Spain, Vol. 11, (1994), pp. 6819-6825.

 

9.      Richart, F.E., J.R. Hall and R.D. Woods, Vibrations of Soils and Foundations, Prentice-Hall, (1970).


MULTI_YIELD

 

 

            Material_name = MULTI_YIELD    Max_number_of_yield_surfaces = Nys_max

                  Material_set_number = mset ,  etc...

 

 

           The maximum number of yield surfaces for all materials in the set must be provided following the material name.

 

Note    Variable Name                       Type       Default      Description

 

Keywords Read Method

            Material_set_number            integer         [1]          Material set number  Numat

 

(1)        Hyperelastic_case                 integer         [0]          Hyperelastic free energy function:

                                                                                               

                                                                                               

 

            Mass_density                          real          [0.0]        Mass density

 

(2)        Shear_modulus                        real          [0.0]        Shear modulus

 

(2)        Bulk_modulus                         real          [0.0]        Bulk modulus

 

            Activation_time                      real          [0.0]        Time at which nonlinearities are activated.

 

(3)        Initial_stress

                 initial_stress_11                  real          [0.0]        Component 11 ()

                 initial_stress_22                  real          [0.0]        Component 22 ()

                 initial_stress_33                  real          [0.0]        Component 33 ()

                 initial_stress_12                  real          [0.0]        Component 12 ()

                 initial_stress_23                  real          [0.0]        Component 23 ()

                 initial_stress_31                  real          [0.0]        Component 31 ()

 

 (4)       Solid_mass_density                real          [0.0]        Mass density (Solid Phase)

 

(4)        Fluid_mass_density                real          [0.0]        Mass density (Fluid Phase)

 

(4)        Fluid_bulk_modulus               real          [0.0]        Fluid bulk modulus

 

(4)        Porosity                                   real          [0.0]        Porosity

 

            Number_of_yield_surfaces  integer  [Nys_max]   Number of yield surfaces  0 and
                                                                                                 Nys_max

 

            Yield_type                               list            [*]          Yield function type

                 Mises

                 Drucker_Prager
                 Mohr_Coulomb

 

 

 

            (cont'd)


 

(cont'd)

 

Note    Variable Name                       Type       Default      Description

 

            Plasticity_sub_type              integer         [3]          Plasticity material sub-type  1 and  8

           

            Principal_anisotropy             integer         [2]          Principal cross-anisotropy direction.

Plasticity_sub_type = 4

            Reduction_ratio                      real          [0.0]        Reduction strength ratio

 

            Reduction_rate                        real          [0.0]        Reduction rate

 

Plasticity_sub_type = 8

            Internal_cone                           list           [on]         Internal cone option (only applicable to
                 on / off                                                                  Drucker-Prager yield function type)

 

            Plastic_potential_code         integer        [0]          Plastic potential code  0 and  1

                                                                                                = 0: standard; =1: enhanced.

 

(5)        Ref_mean_stress                     real          [0.0]        Reference mean normal stress  > 0.0

 

            Power_exponent                     real          [0.0]        Power exponent  > 0.0

 

            Cohesion                                 real          [0.0]        Cohesive coefficient 0.0

 

            Friction_angle_comp               real          [0.0]        Ultimate friction angle in compression
                                                                                                 > 0.0

 

            Friction_angle_ext                  real          []        Ultimate friction angle in extension
                                                                                                 > 0.0

 

            Dilation_angle_comp              real          [0.0]        Dilation angle in compression

 

            Dilation_angle_ext                  real          [0.0]        Dilation angle in extension

 

(6)        Dilatational_parameter_Xpp   real          [1.0]        Dilatational parameter  0.0

 

            Max_dilatational_Xpp            real         [Xpp]       Maximum dilatational parameter

                                                                                             0.0

 

            Dilatational_ratio                    real          [1.0]        Dilatational ratio

 

            Damage_rate                           real          [0.0]        Damage rate

 

 

(cont'd)


 

(cont'd)

 

Note    Variable Name                       Type       Default      Description

 

Shear Stress-Strain Generation Data

 

            Number_of_generation_pts  integer       [100]        Number of generation points

 

            Stress_driven                           list           [on]         Stress / strain driven option

                 on / off

 

            Shear stress-strain generation data must follow

 

List Read Method

            Material data must follow in the form:

                 < m, Nys(m), IHyper(m), G(m), B(m), (m), (m), (m), (m), Pf(m), cpt(m) >

                 if (Plasticity_sub_type le 5) then

                     < _max(m), _max(m), (m), xl(m), xu(m) >

                 if (Plasticity_sub_type eq 8) then

                     < c(m), p1(m), (m), _c(m), _e(m), Xpp(m), Xpp_comp(m), Xpp_ext(m) >

                     < _c(m), _e(m), (m), Slope(m), max_c(m), max_e(m),
                          _c(m), x1_c(m), xu_c(m), _e(m), x1_e(m), xu_e(m) >

                 < Stres(i, m), i = 1, 6) >

                 < terminate with a blank record >.

 

 

 

Notes/

(1)        Only applicable to finite deformation case (see Section 9.2.1).

 

(2)---- For Plasticity_sub_type and are the elastic shear and bulk moduli at the reference mean stress  (see Note 5).

 

(3)        Tensile stresses are positive.

 

(4)        Only applicable to porous media models.

 

(5)        The dependence of the elastic shear and bulk moduli on the (effective) mean normal stress is assumed of the following form:

 

 

(6)        See Ref. [6] for details.

 


 

Shear Stress-Strain Data Generation:

            For the shear stress-strain curve generation, given G1 = maximum shear modulus,  = maximum shear stress, and  = maximum shear strain, two options are available as follows:

 

Option 1:  Let y =  / (G1) and x =  / , then

 

           

 

where the parameter y1 is determined by requiring that at x =1, y = ymax as detailed in Ref. [7].

 

Option 2:  Let y =  / and x =  / with  / G1, then:

 

with

 

where xi , x1, and xu are material parameters as detailed in Ref [8].

 

 

Note    Variable Name                 Type     Default      Description

 

Plasticity_sub_type = 1 to 5

 

            Max_shear_stress              real       [0.0]          Maximum shear stress  > 0.0

 

            Max_shear_strain              real      [0.06]         Maximum shear strain  > (/G1)

 

(7)        Coefficient_alpha              real       [0.0]          Generation coefficient   0.0

 

            Coefficient_x1                  real      [0.30]         Generation coefficient x1  0.0

 

            Coefficient_xu                  real       [1.0]          Generation coefficient xu  0.0

 

 

Notes/

(7)        If  = 0.0, the generation option 1 is used by default.

 


 

            For Plasticity_sub_type = 8, the shear stress-strain data are generated at the reference mean normal stress p1. The maximum shear stress at the reference (effective) mean normal stress p1 is computed as follows: Let:  = (effective) vertical stress;  = (effective) horizontal stress; and following common usage in geotechnical engineering, assume that compressive stresses are counted as positive. Then the mobilized friction angle  is computed as:

 

sin = ;        a = c / tan c = attraction

 

Note that in the above expression  > 0 is positive in compressioon, and  < 0 is negative in extension. Let:

 

p = = mean stress;      q =  = shear stress

 

Initially

p1 = v (1 + 2K0) / 3 ;      q1 = v (1 - K0) = 3p1(1 - K0) / (1 + 2K0)

 

and at failure (ultimate state), the maximum shear stress (max) is computed as max = |qmax|, with:

qmax = 2sinmax (a + a1) / (1 - sinmax (2S + 1/3));      a1 = p1 - Sq1

 

where S = slope of axial stress path followed in the test (see Note 9); max = c in compression tests and max = -e in extension tests, respectively.

 

Note    Variable Name                   Type    Default    Description

 

Plasticity_sub_type = 8

(8)        Lateral_stress_coefficient   real  [v/(1-v)]  Coefficient of lateral stress K0  0.0

 

(9)        Axial_stress_path_slope     real     [0.0]     Slope of axial stress path  0.0

 

            Max_shear_strain_comp     real    [0.06]    Max shear strain in compression maxc  0.0

 

            Max_shear_strain_ext         real    [maxc]    Max shear strain in extension maxe  0.0

 

(10)      Coefficient_alpha_comp    real     [0.0]     Generation coefficient in compression c  0.0

 

            Coefficient_x1_comp         real    [0.30]    Generation coefficient in compression x1c  0.0

 

            Coefficient_xu_comp         real    [1.00]    Generation coefficient in compression xuc  0.0

 

            Coefficient_alpha_ext        real     [c]     Generation coefficient in extension e  0.0

 

            Coefficient_x1_ext             real    [0.30]    Generation coefficient in extension x1e  0.0

 

            Coefficient_xu_ext             real     [1.0]     Generation coefficient in extension xue  0.0

 

 

Notes/

(8)        If K0 = 0.0, set internally equal to elastic K0 =  / (1 - ), with  = Poisson's ratio:

 

 = (3B1 - 2G1) / 2(3B1 + G1) ;           K0 = (3B1 - 2G1) / (3B1 + 4G1)

 

(9)        In conventional drained axial compression/extension soil tests, Slope = Dp/Dq = 1/3.

 

(10)      If c = 0.0, the generation option 1 is used by default.

 

EXAMPLE

Stress_model  /

         material_name = multi_yield  /

         max_number_yield_surfaces = 20  /

         material_type = nonlinear

 

Material_set_number = 1  /

         shear_modulus = 3.00E7  /

         bulk_modulus = 2.00E7  /

         mass_density = 2.65E3  /

         fluid_mass_density = 1.E3  /

         fluid_bulk_modulus = 1.0E9  /

         porosity = 0.43  /

         plasticity_sub_type = 8  /

         ref_mean_stress = 2.0E5  /

         power_exponent = 0.5  /

         number_yield_surfaces = 20  /

         dilation_angle_comp = 30.0  /

         dilation_angle_ext = 30.0  /

         dilatational_parameter_Xpp = 1.0  /

         friction_angle_comp = 30.0  /

         friction_angle_ext = 30.0  /

         lateral_stress_coefficient = 1.0  /

         axial_stress_path_slope = 0.33  /

         max_shear_strain_comp = 0.05  /

         max_shear_strain_ext = 0.03  /

         initial_stress_11 = -2.E5  /

         initial_stress_22 = -2.E5  /

         initial_stress_33 = -2.E5

 

 


 

 

Notes . .

 

 


 

 

Notes . .