10.17         Scalar_Diffusion_Model: Generalized Scalar Diffusion Model

 

SCALAR_DIFFUSION

 

 

            Material_name = SCALAR_DIFFUSION   

                  Material_set_number = mset ,  etc...

 

 

            The generalized scalar diffusion model is defined as follows.

 

Note   Variable Name                            Type       Default    Description

 

           Material_set_number                integer         [1]        Material set number  Numat

 

           Matrix_mass_density                   real          [0.0]       Matrix mass density

 

           Matrix_compressibility                real          [0.0]       Matrix compressibility

 

           Grains_compressibility                real          [0.0]       Grains compressibility

 

           Fluid_mass_density                     real          [0.0]       Mass density  (fluid phase)

           Fluid_compressibility                  real          [0.0]       Compressibility  [LT2 / M]

           Fluid_viscosity                            real          [0.0]       Viscosity [M / L T]

 

(1)      Ideal_fluid                                   list          [off]       Ideal fluid/gas option

                 on / off

 

           Reference_pressure                      real          [0.0]       Reference pressure

 

           Reference_temperature                real          [0.0]       Reference temperature

 

           Molecular_mass                           real          [0.0]       Molecular mass of fluid/gas

 

           Porosity                                                        real        [0.0]        Porosity

 

           Material_type                               list         [linear]     Material type

               linear / nonlinear

 

           Number_of_phases                   integer         [1]        Number of phases; Nphase

 

           Max_number_of_data_points   integer         [0]        Maximum number of data points used to

                                                                                               define relative permeability/capillary

                                                                                               pressure

 

 

 

(cont’d)

 


(cont’d)

 

Note   Variable Name                            Type       Default    Description

 

Permeability

           Permeability                                 list         [none]     Permeability

 

           Type                                             list            [*]        Form of permeability matrix:

                        isotropic / anisotropic                                  if isotropic only k11 need be specified.

 

(2)      Name                                            list            [*]        Name of permeability:

               conductivity                                                           hydraulic conductivity [L / T]

               mobility                                                                   mobility [L3 T / M]

               intrinsic                                                                   intrinsic permeability [L2]

           k_11                                             real          [0.0]       Permeability k11

           k_22                                             real          [0.0]       Permeability k22

           k_33                                             real          [0.0]       Permeability k33

           k_12                                             real          [0.0]       Permeability k12

           k_23                                             real          [0.0]       Permeability k23

           k_13                                             real          [0.0]       Permeability k13

 

 (3)     Exponent_porosity                      real          [0.0]       Porosity exponent

 

Diffusivity / Dispersivity

           Diffusivity                                    list         [none]     Diffusivity

 

           Type                                             list            [*]        Form of diffusivity matrix:

               isotropic / anisotropic                                             if isotropic only k11 need be specified.

 

           k_11                                             real          [0.0]       Diffusivity k11

           k_22                                             real          [0.0]       Diffusivity k22

           k_33                                             real          [0.0]       Diffusivity k33

           k_12                                             real          [0.0]       Diffusivity k12

           k_23                                             real          [0.0]       Diffusivity k23

           k_13                                             real          [0.0]       Diffusivity k13

 

 

 

 

 

 


 

EXAMPLE

            Scalar_Diffusion_Model  /

                 material_type = linear  /

                 material_name = scalar_diffusion

 

                     material_set_number = 1  /

                     mass_density = 1.e3  /

                     porosity = 0.30  /

                     compressibility = 1.e3-6  /

                     permeability  /

                          type = isotropic  /

                          name = conductivity  /

                                    k_11 = 1.60e-3

 

Notes /

(1)        The equation of state is then of the form:

 

                        p =

 

 

where p = pressure; = mass density; R = fluid/gas constant (=8314 J/(kmol°K)); w = molecular mass; and T = temperature [°K].  Then, for instance for air:

 

                        w = 28.97 kg/kmol, and:

 

                       

 

(2)        Let k denote the intrinsic permeability (units: [L2]).  Then

 

                         =  hydraulic conductivity [L / T]

 

                              =   mobility [L3 T / M]

 

where  = viscosity [M / L T],  = fluid mass density [M / L3]; and g = acceleration of gravity [L / T2].

 

(3)               The permeability is function of porosity as:

 

                       

 

                  where initial porosity, and porosity exponent.


10.17.1      Multi-Phase Fluid Flow

 

            For multi-phase fluid flow problems the following material data must also be provided.

 

Note   Variable Name                         Type     Default   Description

 

           eos_options                               list        [none]    Equation of state options

                 PU_cmi

                 tough2

                 Peng_Robinson

                 dry_gas

 

           reference_pressure                    real        [0.0]     reference pressure

 

           reference_temperature              real        [0.0]     reference temperature

 

           matrix_mass_density                real        [0.0]     Matrix mass density

 

           matrix_compressibility              real        [0.0]     Matrix compressibility

 

           grains_compressibility              real        [0.0]     Grains compressibility

 

(1)      Relative_permeability               list          [*]       Relative permeability formula

                 Touma_Vauclin

                 Linear

                 Power

                 Corey

                 Grant

                 perfect_mobility

                 Fatt_Klikoff

                 vanGenuchten_Mualem

                 Verma

                 Berea

                 Modified_Corey

                 Stone_3_phase

 

 (1)     rp_i                                            real        [0.0]     Coefficient RP(i)

 

 

 

(cont’d)

 


(cont’d)

 

Note   Variable Name                            Type       Default    Description

 

 (2)     Capillary_pressure                     list        [none]    Capillary pressure formula

                 Touma_Vauclin

                 Linear

                 Pickens

                 Trust

                 Milly

                 Leverett

                 vanGenuchten

                 none

 

 (2)     cp_i                                           real        [0.0]     Coefficient CP(i)

 

 


 

Notes /

(1)        Relative Permeability Functions

 

            IRP = 0     Touma_Vauclin function

The relative permeability is assumed in this case to be given by a curve fit to the experimental data as:

 

                              formula_type = 1             

 

                              formula_type = 2             

 

                              where pc = p2 –p1 = capillary pressure; p0 = normalizing pressure;

                              and Si = degree of saturation.

 

            IRP = 1     linear function

                              krl increases linearly from 0 to 1 in the range RP(1) ≤ Sl ≤ RP(3);

                              krg increases linearly from 0 to 1 in the range RP(2) ≤ Sg ≤ RP(4).

                              Restrictions:  RP(3) > RP(1); RP(4) > RP(2).

 

            IRP = 2     Power function

                              krl = Sl**RP(1)

                              krg = 1.

 

            IRP = 3     Corey’s curves (1954)

                                    krl = Ŝ4

                                    krg = (1 – Ŝ)2 (1 – Ŝ2)

 

                              where Ŝ = (Sl – Slr) / (1 – Slr – Sgr)

                              with Slr = RP(1);  Sgr = RP(2)

                              Restrictions:  RP(1) + RP(2) < 1.

 

            IRP = 4     Grant’s curves (Grant, 1977)

                                    krl = Ŝ4

                                    krg = 1 - krl

                              where Ŝ = (Sl – Slr) / (1 – Slr – Sgr)

                              with Slr = RP(1);  Sgr = RP(2)

                              Restrictions:  RP(1) + RP(2) < 1.

 

            IRP = 5     all phases perfectly mobile

                              krg = krl = 1 for all saturations; no parameters

 


 

            IRP = 6     functions of Fatt and Klikoff (1959)

                                    krl = (S*)3

                                    krg = (1 – S*)3

                              where S* = (Sl – Slr) / (1 – Slr)

                              with Slr = RP(1).

                              Restriction:  RP(1) < 1.

 

            IRP = 7     van Genuchten-Mualem model (Mualem, 1976; van Genuchten, 1980)

 

                                   

 

                              Gas relative permeability can be chosen as one of the following two forms, the

                              second of which is due to Corey (1954)

 

                                   

 

                              subject to the restriction 0 ≤ krl, krg ≤ 1

 

                              Here, S* = (Sl – Slr) / (Sls – Slr), Ŝ = (Sl – Slr) / (1 – Slr – Sgr)

 

                              Parameters:    RP(1) =

                                                     RP(2) = Slr

                                                     RP(3) = Sls

                                                     RP(4) = Sgr

 

            Notation:  Parameter  is m in van Genuchten’s notation, with m = 1 – 1/n;

                              parameter n is often written as .

 

            IRP = 8     function of Verma et al. (1985)

                                    krl = Ŝ3

                                    krg = A + B Ŝ + C Ŝ2

                              where Ŝ = (Sl – Slr) / (Sls – Slr),

                              Parameters as measured by Verma et al. (1985) for steam-water flow in an

                              unconsolidated sand:

 

Slr = RP(1) = 0.2

B  = RP(4) = -1.7615

Sls = RP(2) = 0.895

C  = RP(5) = 0.5089

A  = RP(3) = 1.259

 

 

            IRP = 12   modified Corey function

                                   

 

                                   

 

                                   

 

            IRP = 14   Stone 3-phase model

 

a.             Aqueous phase:

 

                                   

 

with irreducible aqueous phase saturation (typically )

         m = exponent (typically m=3).

 

b.            Liquid phase:

 

                                   

 

                                   

 

            irreducible liquid phase saturation (typically .

 

c.             Gas phase:

 

                                   

 

            irreducible gas phase saturation (typically 0.01).

 

 

 

 

 

 

                        Parameters:      RP(1) = m

                                                RP(2) =

                                                RP(3) =

                                                RP(4) =

 

(2)        Capillary Pressure Functions

 

            ICP = 0     Touma_Vauclin function

The capillary pressure vs saturation is assumed in this case to be given by a van Genuchten-type curve fit to the experimental data as:

 

 

                              where Pcap = p2 - p1 = capillary pressure; p0 = normalizing pressure;

                              and Sl = degree of saturation.

 

                              Parameters:  Slr = CP(1)    Sls = CP(2)    n = CP(3)    α = CP(4)    p0 = CP(5)

           

            ICP = 1     linear function

 

                                   

 

                              Restriction:  CP(3) > CP(2).

 

            ICP = 2     function of Pickens et al. (1979)

                                   

                              with

                                    A = (1 + Sl/Sl0) (Sl0 - Slr) / (Sl0 + Slr)

                                    B = 1 – Sl/Sl0

 

                              where

                                    P0 = CP(1)       Slr = CP(2)      Sl0 = CP(3)       x = CP(4)

 

                              Restrictions:  0 < CP(2) < 1 ≤ CP(3);       CP(4) ≠ 0       

 


 

            ICP = 3     TRUST capillary pressure (Narasimhan et al., 1978)

                                   

 

                              where

                                    P0 = CP(1)       Slr = CP(2)      = CP(3)       Pe = CP(4)

 

                              Restrictions:  CP(2) ≥ 0;      CP(3) ≠ 0

 

            ICP = 4     Milly’s function (Milly, 1982)

                                    Pcap = +97.783 x 10A

                              with

                                   

 

                              where Slr = CP(1)

                              Restriction:  CP(1) ≥ 0.

 

            ICP = 6     Leverett’s function (Leverett, 1941; Udell and Fitch, 1985)

                                   

                              with

                              *(T) = surface tension of water (supplied internally)

                              f(Sl) = 1.417 (1 – S*) – 2.120 (1 – S*)2 + 1.263 (1 – S*)3

 

                              where

                                    S* = (Sl - Slr) / (1 – Slr)

 

                              Parameters:  P0 = CP(1)      Slr = CP(2)

                              Restriction:  0 ≤ CP(2) < 1

 

            ICP = 7     van Genuchten function (van Genuchten, 1980)

                                   

                              subject to the restriction

                                    0 ≤ Pcap Pmax

 

                              Here,

                                    S* = (Sl - Slr) / (Sls – Slr)

 

                              Parameters:   CP(1) =  = l – l/n

                                                   CP(2) = Slr (should be chosen smaller than the corresponding

                                                                       parameter in the relative permeability function; see

                                                                       note below.)

                                                   CP(3) = P0

                                                   CP(4) = Pmax

                                                   CP(5) = Sls

                              Notation:  Parameter  is m in van Genuchten’s notation, with m = l – l/n;

                              parameter n is often written as.

 

                              Note on parameter choices: In van Genuchten’s derivation (1980), the parameter Slr for irreducible water saturation is the same in the relative permeability and capillary pressure functions.  As a consequence, for SlSlr we have krl → 0 and Pcap, which is unphysical because it implies that the radii of capillary menisci go to zero as liquid phase is becoming immobile (discontinuous).  Accordingly, we recommend to always choose a smaller Slr for the capillary pressure as compared to the relative permeability function.

 

            ICP = 8     no capillary pressure

                              Pcap = 0 for all saturations; no parameters

 


 

10.17.1.1   Fluid Phase Data

 

Note    Variable Name                            Type     Default    Description

 

 (1)       Phase_number                           integer       [1]        Phase number; i ≤ Nphase

 

            Phase_type                                   list       [liquid]     Phase type

                  liquid

                  gas

 

            Phase_name                               string      [none]     Phase name; name(s) must be enclosed

                                                                                                  in quotation marks.

 

            Mass_density                               real        [0.0]       Mass density

            Compressibility                            real        [0.0]       Compressibility  [LT2 / M]

            Viscosity                                      real        [0.0]       Viscosity M / L T

 

            Saturation                                    real        [0.0]       Saturation Si

 

            Minimum_saturation                    real        [0.0]       Minimum saturation Sir

 

            Maximum_saturation                   real        [0.0]       Maximum saturation Sis

 

            Mass_fraction_dissolved_solid   real        [0.0]       mass fraction of total dissolved solid (TDS)

 

 (2)       formula_type                             integer   [iphase]    Relative permeability formula type

                                                                                                  (Touma_Vauclin option)

 

 (2)       a_coefficient                                real        [0.0]       Coefficient Ai in curve fit formula

 

 (2)       b_coefficient                                real        [0.0]       Coefficient Bi in curve fit formula

 

 (2)       Normalizing_pressure                  real        [0.0]       Normalizing pressure po in curve fit

                                                                                                  formula

Diffusivity / Dispersivity

           Diffusivity                                    list         [none]     Diffusivity

 

           Type                                             list            [*]        Form of diffusivity matrix:

               isotropic / anisotropic                                             if isotropic only k11 need be specified.

 

           k_11                                             real          [0.0]       Diffusivity k11

           k_22                                             real          [0.0]       Diffusivity k22

           k_33                                             real          [0.0]       Diffusivity k33

           k_12                                             real          [0.0]       Diffusivity k12

           k_23                                             real          [0.0]       Diffusivity k23

           k_13                                             real          [0.0]       Diffusivity k13

 

 


 

Notes/

(1)        The wetting phase must be defined as phase_number = 1.

 

 (2)       The relative permeability is assumed in this case to be given by a curve fit to the experimental data as:

 

            formula_type = 1                   

 

            formula_type = 2                   

where pc = p2 –p1 = capillary pressure; p0 = normalizing pressure; and Si = degree of saturation.

 

References / Bibliography

 

1.         Touma, J. and M. Vauclin, “Experimental and Numerical Analysis of Two-Phase Infiltration in a Partially Saturated Soil,” Transport in Porous Media, Vol. 1, 1986, pp. 27-55.

 

 


 

10.17.1.2   Relative Permeability and Capillary Pressure Data

 

Note    Variable Name                    Type     Default      Description

 

            Material_set_number         integer       [1]          Material set number  Numat

 

            Data_type                             list        [none]       Data type:

                 Relative_permeability                                        Relative permeability

                 Capillary_pressure                                              Capillary pressure

 

Relative Permeability Case

            Data must follow in the form:

(1)            < S1, kr1(S1) , kr2 (S1) >

                 < etc..., terminate with a blank record >

 

Capillary Pressure Case

            Data must follow in the form:

(2)            < S1, pc1(S1), pc2(S1) >

                 < etc..., terminate with a blank record >

 

 

Notes /

(1)        S1 = degree of saturation for phase 1; S2 = 1 - S1

            kr1 (S1) = relative permeability for phase 1

            kr2 (S1) = relative permeability for phase 2

 

(2)        pc1 (S1) = capillary pressure for phase 1 invasion

            pc2 (S1) = capillary pressure for phase 1 drainage

 


EXAMPLE

            Scalar_diffusion_model  /

                 material_type = linear  /

                 material_name = scalar_diffusion  /

                 number_of_phases = 2  /

                 max_number_of_data_points = 11

                 material_set_number = 1  /

                     porosity = 0.30  /           

                     permeability  /

                          type = isotropic  /

                          name = intrinsic  /

                          k_11 = 2.1248e-11

 

                 phase_number = 1  /

                     mass_density = 62.4  /

                     compressibility = 1.0e-6  /

                     viscosity = 2.088543e-5

 

                 phase_number = 2  /

                     mass_density = 49.92  /

                     compressibility = 1.0e-6  /

                     viscosity = 8.3541723e-5

 

                 material_set_number = 1  /

                     data_type = Relative_permeability

 

                              0.20           0.00           0.60

                              0.25           0.02           0.47

                              0.30           0.04           0.38

                              0.35           0.07           0.31

                              0.40           0.09           0.25

                              0.45           0.13           0.18

                              0.50           0.17           0.13

                              0.55           0.22           0.09

                              0.60           0.28           0.05

                              0.65           0.35           0.02

                              0.70           0.45           0.00

 

                 material_set_number = 1  /

                     data_type = Capillary_pressure

 

                              0.200         208.854          208.854

                              0.225         173.349          173.349

                              0.250         148.287          148.287

                              0.300         121.136          121.136

                              0.350         102.339          102.339

                              0.400           87.719            87.719

                              0.500           68.922            68.922

                              0.650           52.213            52.213

                              0.700           48.663            48.663

 


 

 

Notes . .